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IMPORTANCE The activity of lipoprotein lipase (LPL) is the rate-determining step in clearing
triglyceride-rich lipoproteins from the circulation. Mutations that damage the LPL gene (LPL)
lead to lifelong deficiency in enzymatic activity and can provide insight into the relationship
of LPL to human disease.

OBJECTIVE To determine whether rare and/or common variants in LPL are associated with
early-onset coronary artery disease (CAD).

DESIGN, SETTING, AND PARTICIPANTS In a cross-sectional study, LPL was sequenced in 10 CAD
case-control cohorts of the multinational Myocardial Infarction Genetics Consortium and a
nested CAD case-control cohort of the Geisinger Health System DiscovEHR cohort between
2010 and 2015. Common variants were genotyped in up to 305 699 individuals of the Global
Lipids Genetics Consortium and up to 120 600 individuals of the CARDIoGRAM Exome
Consortium between 2012 and 2014. Study-specific estimates were pooled via meta-analysis.

EXPOSURES Rare damaging mutations in LPL included loss-of-function variants and missense
variants annotated as pathogenic in a human genetics database or predicted to be damaging
by computer prediction algorithms trained to identify mutations that impair protein function.
Common variants in the LPL gene region included those independently associated with
circulating triglyceride levels.

MAIN OUTCOMES AND MEASURES Circulating lipid levels and CAD.

RESULTS Among 46 891 individuals with LPL gene sequencing data available, the mean (SD)
age was 50 (12.6) years and 51% were female. A total of 188 participants (0.40%; 95% CI,
0.35%-0.46%) carried a damaging mutation in LPL, including 105 of 32 646 control
participants (0.32%) and 83 of 14 245 participants with early-onset CAD (0.58%). Compared
with 46 703 noncarriers, the 188 heterozygous carriers of an LPL damaging mutation
displayed higher plasma triglyceride levels (19.6 mg/dL; 95% CI, 4.6-34.6 mg/dL) and higher
odds of CAD (odds ratio = 1.84; 95% CI, 1.35-2.51; P < .001). An analysis of 6 common
LPL variants resulted in an odds ratio for CAD of 1.51 (95% CI, 1.39-1.64; P = 1.1 × 10−22)
per 1-SD increase in triglycerides.

CONCLUSIONS AND RELEVANCE The presence of rare damaging mutations in LPL was
significantly associated with higher triglyceride levels and presence of coronary artery
disease. However, further research is needed to assess whether there are causal mechanisms
by which heterozygous lipoprotein lipase deficiency could lead to coronary artery disease.
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T he enzymatic activity of lipoprotein lipase (LPL) serves
as the rate-determining step in the postprandial clear-
ance of circulating triglyceride-rich lipoproteins.1

Homozygous LPL deficiency, known as familial chylomicro-
nemia syndrome, is associated with marked elevations in
chylomicrons, severe hypertriglyceridemia, and recurrent
pancreatitis.2 However, an increased risk of coronary artery
disease (CAD) in this condition has not been observed, po-
tentially because the large circulating chylomicrons are
unable to penetrate the arterial wall.3,4 By contrast, in hetero-
zygous LPL deficiency, the attenuated capacity for lipolysis
leads to a buildup of circulating chylomicron remnants and
intermediate-density lipoproteins that are rich in both tri-
glycerides and cholesterol. A study of 9 such individuals sug-
gested an increased risk of CAD,5 but this association has not
been confirmed.

In this study, the LPL gene (LPL; RefSeq NM_000237.2)
was sequenced to test the hypothesis that rare damaging
mutations leading to heterozygous LPL deficiency are associ-
ated with differences in circulating lipid levels as well as
higher odds of early-onset CAD. In addition, to provide
complementary evidence, independent common variants (al-
lele frequency >1%) in the LPL gene region were also tested
for association with CAD.

Methods
Study Populations
Gene sequencing of LPL was performed in participants of 10
previously described CAD case-control cohorts (eTable 1 in
the Supplement). Studies included the Atherosclerosis,
Thrombosis, and Vascular Biology Italian Study6; the Exome
Sequencing Project Early-Onset Myocardial Infarction
study7; a nested case-control of the Jackson Heart Study8;
the South German Myocardial Infarction study9; the Ottawa
Heart Study10; the Precocious Coronary Artery Disease
study11; the Pakistan Risk of Myocardial Infarction Study12;
the Registre Gironí del COR (Gerona Heart Registry) study13;
the Leicester Myocardial Infarction study14; and the North
German Myocardial Infarction study.15 Clinical data were
assessed in each study. The majority of CAD cases in this
analysis (97.5%) were ascertained with onset at an early age
(defined as ≤50 years in men and ≤60 years in women).
Written informed consent was obtained from all partici-
pants of contributing studies, each of which received ethical
approval from respective institutional review boards.
Approval for this analysis was obtained from the institu-
tional review board of Partners HealthCare.

Replication of the observed associations with regard to
lipid levels and CAD was performed via analysis of the previ-
ously described DiscovEHR study.16 DiscovEHR study partici-
pants were recruited as part of the MyCode Community
Health Initiative of the Geisinger Health System and Regen-
eron Genetics Center. The present analysis was restricted to
early-onset CAD cases and CAD-free controls (aged <55 years
for men or <65 years for women for both cases and controls).
Median values for serially measured laboratory and anthro-

pometric traits were calculated for all individuals with 2 or
more measurements in the electronic health record (EHR)
following removal of likely spurious values that were more
than 3 SDs from the intraindividual median value. Partici-
pants were considered to have CAD if they had a history of
coronary revascularization in the EHR, or history of acute
coronary syndrome, ischemic heart disease, or exertional
angina (International Classification of Diseases, Ninth Revision
codes 410*, 411*, 412*, 413*, and 414*) with angiographic evi-
dence of obstructive coronary atherosclerosis (>50% stenosis
in ≥1 major epicardial vessel from catheterization report). The
CAD-free controls were defined as individuals without any
case criteria or any single encounter or problem list diagnosis
code indicating CAD.

Across all studies, the effect of lipid-lowering therapy in
individuals reporting use at the time of lipid measurement
was taken into account by dividing the measured total cho-
lesterol and low-density lipoprotein cholesterol (LDL-C) by
0.8 and 0.7, respectively.16-19 Because remnant cholesterol
was not measured in study cohorts, values were estimated
according to the following formula: remnant choles-
terol = total cholesterol minus high-density lipoprotein cho-
lesterol minus LDL-C.20

To extend the analysis to common variants in LPL, sum-
mary statistics of 2 large genome-wide association studies were
analyzed. The effect of common LPL variants on circulating
triglyceride levels was used as a proxy for influence on LPL ac-
tivity. The relationship of common LPL variants with triglyc-
eride levels was assessed in an analysis of up to 305 699 indi-
viduals from 73 cohorts of the Global Lipids Genetics
Consortium genotyped using the Illumina HumanExome
BeadChip between 2012 and 2014. These same variants were
subsequently linked to CAD in up to 120 600 individuals also
genotyped between 2012 and 2014 in the previously re-
ported CARDIoGRAM Exome Consortium study.15

Gene Sequencing
Whole-exome sequencing of the Myocardial Infarction
Genetics Consortium participants was performed between

Key Points
Question Do heterozygous carriers of a damaging mutation in the
gene encoding lipoprotein lipase have increased odds of coronary
artery disease?

Findings In this cross-sectional study of coronary artery disease
case-control studies, gene sequencing identified a damaging
mutation in the lipoprotein lipase gene in 188 of 46 891 individuals
(0.4%). These mutations were associated with an increase of
19.6 mg/dL in plasma triglycerides and an increased presence
of coronary artery disease.

Meaning The presence of rare damaging mutations in the
lipoprotein lipase gene was significantly associated with higher
triglyceride levels and presence of coronary artery disease;
however, further research is needed to assess whether this
association is causal, including possible mechanisms by which
heterozygous lipoprotein lipase deficiency could lead to coronary
artery disease.
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2010 and 2015 at the Broad Institute as previously de-
scribed.7 In brief, sequence data of all participants were
aligned to a human reference genome build GRCh37.p13
using the Burrows-Wheeler Aligner algorithm. Aligned non-
duplicate reads were locally realigned and base qualities
were recalibrated using Genome Analysis Toolkit software.21

Variants were jointly called using Genome Analysis Toolkit
HaplotypeCaller software. The sensitivity of the selected
variant quality score recalibration threshold was 99.6% for
single-nucleotide polymorphisms and 95% for insertion or
deletion variants as empirically assessed using HapMap con-
trols with known genotypes included in the genotyping call
set. LPL sequence data from the Geisinger Health System Dis-
covEHR participants were extracted from exome sequences
generated at the Regeneron Genetics Center between 2014
and 2015 as previously described.16

Damaging LPL Variant Ascertainment
The positions of genetic variants were based on the complemen-
tary DNA reference sequence for LPL (RefSeq NM_000237.2).
Rare LPL variants (minor allele frequency <1%) were anno-
tated with respect to the following 3 classes in a sequential
fashion: (1) loss-of-function variants, ie, single base changes
that introduce a stop codon leading to premature trunca-
tion of a protein (nonsense), insertions or deletions (indels)
of DNA that disrupt the translated protein’s amino acid
sequence beyond the variant site (frameshift), or point muta-
tions at sites of pre–messenger RNA splicing that alter the
splicing process (splice-site); (2) variants annotated as patho-
genic in ClinVar, a publicly available archive of genetic varia-
tions associated with clinical phenotypes22; and (3) missense
variants predicted to be damaging or possibly damaging
by each of 5 computer prediction algorithms (LRT score,
MutationTaster, PolyPhen-2 HumDiv, PolyPhen-2 HumVar,
and SIFT) as performed previously.7,23 Software used to
annotate observed variants included Variant Effect Predictor
version 81 and its associated Loss-of-Function Transcript
Effect Estimator (LOFTEE) plugin,24,25 and the dbNSFP data-
base version 3.0b1.26

Statistical Analysis
The association of rare damaging LPL mutations with lipid
phenotypes in the Myocardial Infarction Genetics Consor-
tium and the DiscovEHR studies was estimated using linear
regression with adjustment for age, age squared, sex, study
cohort, and the first 5 principal components of ancestry. Prin-
cipal components of ancestry were based on observed geno-
typic differences across subpopulations (eg, race or ethnicity)
in the overall study. Inclusion of principal components as
covariates in linear regression analyses increases statistical
power for true relationships and minimizes confounding by
ancestry.27 The association of LPL mutations with odds of
CAD was determined via meta-analysis using Cochran-
Mantel-Haenszel statistics for stratified 2-by-2 tables without
continuity correction as implemented previously.9,18,28

Common variants (allele frequency >1%) at the LPL
locus independently associated with circulating triglyceride
levels were ascertained via analysis of the Global Lipids

Genetics Consortium cohorts. The association of variants
with inverse normal transformed residuals of natural log of
triglyceride levels was determined in a model adjusted for
age, age squared, sex, and up to 4 principal components of
ancestry. For any given genetic locus, such as LPL, multiple
variants may be associated with circulating triglyceride lev-
els in an independent fashion. Sequential forward selection
provides a statistical framework to identify such indepen-
dent variants.29,30 The relationship of all genetic variants in
the LPL locus with triglyceride levels was first determined.
This analysis was then repeated using regression condi-
tional on the most strongly associated variant, continuing
the process until the top result was no longer significant at a
prespecified threshold of P < 5 × 10−8 (to represent genome-
wide significance). To aid in interpretability, the beta coeffi-
cients derived from this analysis were converted into units
of milligrams per deciliter using data from the National
Health and Nutrition Examination Survey from 2005
through 2012, in which a similar transformation was used
(substituting self-reported race for principal components of
ancestry) to yield a conversion factor of 60.7-mg/dL change
in triglyceride level per 1-unit change in inverse normal
transformed values.

These same common LPL variants were linked to CAD
using summary-level test statistics in the previously reported
CARDIoGRAM Exome Consortium study.15 The cumulative
association of these variants with odds of CAD was deter-
mined, standardized per genetic 1-SD increase in triglyceride
levels. Explicitly, if x is the association of each variant with
the outcome of interest, and y the association of each variant
with triglyceride levels, then the estimated association of a
1-SD increase in triglycerides mediated by LPL locus variants
is calculated as a fixed-effects meta-analysis of x/y for all
variants. This method is mathematically equivalent to a pre-
viously reported approach.31

Analyses were performed using R version 3.2.2 software
(The R Foundation). All reported P values were 2-tailed, with
P < .05 used as a threshold for statistical significance unless
otherwise specified.

Results
Gene sequencing of LPL was performed in 22 533 partici-
pants of the Myocardial Infarction Genetics Consortium,
including 12 395 controls and 10 138 cases with CAD
(Table 1). A total of 123 loss-of-function or missense variants
in LPL with minor allele frequency less than 1% were identi-
fied. Of these 123 variants, 52 were classified as damaging
(Table 2). Eight of these 123 variants led to loss of function,
including 5 premature stop (nonsense) codons, 2 splice
acceptor or donor variants, and 1 frameshift mutation. Only
about 25% of missense variants in any given gene have a
strongly damaging effect on protein function32; additional
annotation algorithms were thus needed for the 115 mis-
sense variants. Six were previously deemed pathogenic
based on ClinVar annotation. In addition, 38 of the 109
remaining missense variants were predicted to be damaging
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by each of 5 computer prediction algorithms. Because any
individual damaging mutation was rare (eTable 2 in the
Supplement), the 52 damaging variants were aggregated for
subsequent analyses of phenotypic consequences.

A total of 97 individuals in the Myocardial Infarction
Genetics Consortium cohorts carried one of the 52 damaging
LPL mutations, including 60 cases (0.59%; 95% CI, 0.46% to
0.77%) and 37 controls (0.30%; 95% CI, 0.21% to 0.42%)
(eTable 3 in the Supplement). Circulating lipid levels were
available in 16 200 participants (72%), including 72 of 97
mutation carriers (74%). Median triglyceride levels were 183
mg/dL (interquartile range, 135-274 mg/dL) in LPL mutation
carriers vs 147 mg/dL (interquartile range, 99-217 mg/dL) in
noncarriers (to convert to micromoles per liter, multiply by
0.0113). In an adjusted linear regression model, circulating
triglyceride levels were 25.6 mg/dL (95% CI, −2.5 to 53.5
mg/dL) higher in mutation carriers as compared with noncar-
riers, although there was no significant association (P = .07)
(Figure 1 and eTable 4 in the Supplement). Furthermore,
mutation carriers were at increased odds of having clinical
hypertriglyceridemia (triglyceride levels ≥150 mg/dL) (odds
ratio = 1.88; 95% CI, 1.13 to 3.20; P = .02).

The presence of a rare damaging LPL mutation was asso-
ciated with an odds ratio for CAD of 1.96 (95% CI, 1.30-2.96;
P = .001) in a combined analysis of the Myocardial Infarction

Genetics Consortium studies (Figure 2). This association was
most pronounced in those with a loss-of-function mutation in
LPL (Table 2). Within the subgroup of 2592 CAD cases and 5341
controls free of CAD with an observed LDL-C level lower than
130 mg/dL (to convert to millimoles per liter, multiply by
0.0259), an increased odds of CAD among carriers of a dam-
aging LPL mutation remained apparent (odds ratio = 2.15; 95%
CI, 1.14-4.06; P = .02).

Independent replication of the increased circulating tri-
glyceride levels and CAD was performed in 24 358 individu-
als from the Geisinger Health System DiscovEHR cohort
(Table 1). This cohort included 4107 individuals with early-
onset CAD (age <55 years in men or <65 years in women) as
ascertained based on medical records as well as 20 251 CAD-
free controls. Ninety-one individuals were heterozygous
carriers of a damaging LPL mutation, including 23 individu-
als with CAD (0.56%; 95% CI, 0.36% to 0.85%) and 68 CAD-
free controls (0.34%; 95% CI, 0.26% to 0.43%). Circulating
triglyceride levels were 17.2 mg/dL (95% CI, −0.5 to 34.9
mg/dL; P = .06) higher in mutation carriers as compared
with noncarriers (Figure 1 and Table 2). The mutation carri-
ers had increased odds of early-onset CAD (odds ratio = 1.67;
95% CI, 1.04 to 2.69; P = .03).

In a combined analysis of the Myocardial Infarction
Genetics Consortium and DiscovEHR cohorts, among 46 891

Table 1. Baseline Characteristics of the Myocardial Infarction Genetics Consortium and Early-Onset CAD DiscovEHR Study Participants

Characteristic

Myocardial Infarction Genetics Consortium Geisinger Health System DiscovEHR Cohorta

Participants With CAD
(n = 10 138)

CAD-Free Controls
(n = 12 395)

Participants With CAD
(n = 4107)

CAD-Free Controls
(n = 20 251)

Age, median (IQR), y 45 (41-50) 60 (48-68) 52 (47-57) 46 (35-55)

Female, No. (%)b 1294 (28) 4276 (19) 2169 (53) 16 334 (81)

BMI, median (IQR) 26 (24-29) 27 (25-31) 32 (28-38) 31 (26-37)

Current smoker, No. (%)b 4322 (47) 2406 (21) 986 (24) 4110 (20)

Medical history, No. (%)b

Type 2 diabetes 2190 (25) 1942 (19) 1520 (37) 2661 (13)

Hypertension 2918 (47) 3741 (42) 3373 (82) 6848 (34)

Lipid-lowering
medicationc

2739 (31) 473 (5) 2494 (61) 3711 (18)

Lipid phenotypes,
median (IQR), mg/dL

Total cholesterold 216 (181-252) 197 (168-228) 209 (184-240) 198 (173-227)

LDL cholesterold 138 (107-171) 120 (96-147) 124 (101-151) 117 (96-142)

HDL cholesterol 37 (31-45) 42 (33-53) 44 (37-53) 50 (42-61)

Triglycerides 166 (116-246) 133 (90-198) 154 (112-215) 120 (85-167)

Remnant cholesterol 33 (23-48) 28 (19-40) 33 (22-50) 24 (16-35)

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided
by height in meters squared); CAD, coronary artery disease; HDL, high-density
lipoprotein; IQR, interquartile range; LDL, low-density lipoprotein.

SI conversion factors: To convert cholesterol to millimoles per liter, multiply
values by 0.0259; triglycerides to millimoles per liter, multiply by 0.0113.
a Participants were considered to have early-onset CAD (ages <55 years for

men, <65 years for women) if they had a history of coronary revascularization
in the electronic health record, or history of acute coronary syndrome,
ischemic heart disease, or exertional angina (International Classification of
Diseases, Ninth Revision codes 410*, 411*, 412*, 413*, and 414*) with
angiographic evidence of obstructive coronary atherosclerosis (>50% stenosis
in �1 major epicardial vessel from catheterization report). Participants were
considered to have diabetes if they had at least 2 of the following: (1) a history

of type 2 diabetes in the electronic health record, (2) antidiabetic medication
use, or (3) fasting glucose level greater than 126 mg/dL (to convert to
millimoles per liter, multiply by 0.0555) or hemoglobin A1c level greater than
6.5% (to convert to proportion of total hemoglobin, multiply by 0.01).
Participants were considered to have hypertension if they had a history of
hypertension in the electronic health record, antihypertensive medication use,
or systolic blood pressure greater than 140 mm Hg or diastolic blood pressure
greater than 90 mm Hg.

b Percentages indicative of participants with nonmissing values.
c At the time of lipid measurement.
d Total and LDL cholesterol values were divided by 0.8 and 0.7, respectively,

in those receiving lipid-lowering medication to estimate untreated values.

Research Original Investigation Association of Lipoprotein Lipase Gene Variation With Coronary Artery Disease

940 JAMA March 7, 2017 Volume 317, Number 9 (Reprinted) jama.com

Copyright 2017 American Medical Association. All rights reserved.

Downloaded From:  by a Cambridge University Library User  on 06/22/2018

http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2017.0972&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2017.0972
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2017.0972&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2017.0972
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2017.0972&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2017.0972
http://www.jama.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2017.0972


Copyright 2017 American Medical Association. All rights reserved.

individuals with LPL gene sequencing data available, the
mean (SD) age was 50 (12.6) years and 51% were female. A
damaging LPL mutation was present in 188 of 46 891 indi-
viduals (0.40%; 95% CI, 0.35% to 0.46%), including 105 of
32 646 control participants (0.32%) and 83 of 14 245 partici-
pants with early-onset CAD (0.58%). A meta-analysis of the
association with lipid levels demonstrated that compared
with 46 703 noncarriers, the 188 heterozygous carriers of an
LPL damaging mutation displayed higher plasma triglycer-
ide levels; these mutations were associated with a circulat-
ing triglycerides increase of 19.6 mg/dL (95% CI, 4.6 to
34.6 mg/dL), a high-density lipoprotein cholesterol decrease
of 3.6 mg/dL (95% CI, −5.7 to −1.5 mg/dL), and a remnant
cholesterol increase of 5.6 mg/dL (95% CI, 2.3 to 9.0 mg/dL)
(Figure 1). These beta coefficients can be interpreted to sug-
gest, for example, that an individual with a damaging LPL
mutation would be predicted to have a 19.6-mg/dL higher
level of circulating triglycerides as compared with an indi-
vidual without such a mutation after correction for poten-
tial confounding related to age, sex, study cohort, and
ancestry. These mutations were additionally associated

with increased odds of early-onset CAD (odds ratio = 1.84;
95% CI, 1.35 to 2.51; P < .001) (Figure 2).

Beyond rare damaging mutations, common variants at
the LPL locus were analyzed to assess for a similar link to tri-
glyceride levels and CAD. In an analysis of up to 305 699 indi-
viduals, 6 common variants (minor allele frequency ranging
from 1%-29%) were robustly (P < 5 × 10−8) and independently
associated with plasma triglyceride levels. The minor (less
common) alleles of 4 of these variants were associated with
decreased triglyceride levels, suggesting gain of lipoprotein
lipase activity, and 2 were linked to increased triglyceride lev-
els, consistent with decreased activity. In an analysis of up to
120 600 individuals of CAD case-control studies, each of
these variants was confirmed to be associated with odds
of CAD (P < .002 for each) with the expected directionality.
A roughly linear relationship was noted in this data set
between association with triglyceride levels and odds of CAD
(eFigure in the Supplement). A weighted analysis that com-
bined these 6 variants demonstrated an odds ratio for CAD of
1.51 (95% CI, 1.39-1.64; P = 1.1 × 10−22) per 1-SD increase in tri-
glycerides mediated by LPL locus variants.

Table 2. Association of Damaging Lipoprotein Lipase Gene (LPL) Mutations With CAD by Rare Variant Class in the Myocardial Infarction
Genetics Consortium Studies and Early-Onset CAD DiscovEHR Study

Outcome

Variant Classa

CombinedLoss-of-Function ClinVar Pathogenic
Predicted
Damaging Missense

Myocardial Infarction Genetics Consortium

Variants, No. 8 6 38 52

Carriers, No. (%)

Participants with CAD (n = 10 138) 7 (0.07) 15 (0.15) 38 (0.37) 60 (0.59)

CAD-free controls (n = 12 395) 2 (0.02) 5 (0.04) 30 (0.24) 37 (0.30)

Beta coefficient for difference in triglyceride
concentrations (95% CI), mg/dLb

35.6 (–4.8 to 119.4) 18.2 (–50.3 to 86.7) 25.6 (–7.3 to 58.5) 25.6 (–2.5 to 53.5)

P Value .41 .60 .13 .07

Odds ratio for CAD (95% CI)c 4.33 (0.85 to 21.96) 3.47 (1.25 to 9.58) 1.55 (0.96 to 2.50) 1.96 (1.30 to 2.96)

P Value .08 .02 .07 .001

Geisinger Health System DiscovEHR Cohort

Variants, No. 3 7 15 25

Carriers, No. (%)

Participants with CAD (n = 4107) 1 (0.02) 6 (0.15) 16 (0.39) 23 (0.56)

CAD-free controls (n = 20 251) 2 (0.01) 28 (0.14) 38 (0.19) 68 (0.34)

Beta coefficient for difference in triglyceride
concentrations (95% CI), mg/dLb

194.6 (92.7 to 296.4) 29.3 (–0.8 to 59.3) 2.4 (–20.1 to 24.9) 17.2 (–0.5 to 34.9)

P Value .001 .06 .83 .06

Odds ratio for CAD (95% CI)c 2.47 (0.22 to 27.2) 1.06 (0.44 to 2.55) 2.08 (1.16 to 2.69) 1.67 (1.04 to 2.69)

P Value .46 .90 .01 .03

Abbreviation: CAD, coronary artery disease.
a Rare variants refer to those with minor allele frequency less than 1% in the

sequenced population. Loss-of-function variants were defined as single base
changes that introduce a stop codon leading to premature truncation of a
protein (nonsense), insertions or deletions (indels) of DNA that disrupt the
translated protein’s amino acid sequence beyond the variant site (frameshift),
or point mutations at sites of pre–messenger RNA splicing that alter the
splicing process (splice-site). Predicted damaging variants refer to those
predicted to be deleterious or possibly deleterious by each of 5 in silico
prediction algorithms (LRT score, MutationTaster, PolyPhen-2 HumDiv,
PolyPhen-2 HumVar, and SIFT).

b Beta coefficients reflective of the difference in triglyceride concentrations
between carriers of a damaging LPL mutation and noncarriers were derived
from linear regression analysis that included adjustment for age, age squared,
sex, cohort, and the first 5 principal components of ancestry. Principal
components of ancestry were based on observed genotypic differences across
subpopulations (eg, race or ethnicity) in the overall study. Inclusion of principal
components as covariates in linear regression analyses increases statistical
power for true relationships and minimizes confounding by ancestry.27

c The association of LPL mutations with risk of CAD was determined via
meta-analysis implementing Cochran-Mantel-Haenszel statistics for stratified
2-by-2 tables.
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Discussion

The protein-coding exons of LPL were sequenced in 46 891 in-
dividuals from an international collaboration of CAD case-
control cohorts and patients of a large health care organiza-
tion. In this study, approximately 0.40% of individuals carried
a rare damaging mutation in LPL. These carriers had in-
creased circulating triglyceride levels (19.6 mg/dL) and an odds
ratio of 1.84 for early-onset CAD. An analysis using common
variants in LPL similarly demonstrated a significant associa-
tion with CAD.

These results permit several conclusions. First, hetero-
zygous LPL deficiency was associated with the presence of
early-onset CAD. By identifying 188 carriers of a rare damag-
ing mutation, an association with higher levels of triglycer-
ides and remnant cholesterol and lower levels of high-
density lipoprotein cholesterol was established along with
an odds ratio for early-onset CAD of 1.84. This susceptibility
to CAD may be due to impaired lipolysis of triglyceride-rich
lipoproteins. Triglyceride-rich lipoproteins penetrate
directly into the arterial wall and are selectively retained in
the intima, thus promoting the development of cholesterol-
rich foam cells and an inflammatory response that acceler-
ate atherosclerosis.33

Second, a complementary common variant analysis
involving 6 independent LPL variants confirmed the associa-
tion of genetic variation in LPL with CAD. In an analysis in
more than 300 000 individuals, each common variant’s asso-
ciation with triglyceride levels was used as a proxy for influ-
ence on LPL activity. Association of these same variants with
CAD in more than 120 000 individuals demonstrated an odds
ratio for CAD of 1.51 per 1-SD increase in triglyceride levels
associated with common LPL locus variants. These findings
confirm and extend previous common variant studies that
have suggested similar trends.15,34,35

Third, these data add to considerable recent genetic evi-
dence that beyond LDL-C, LPL and its endogenous regulation—
via facilitator (apolipoprotein A5 [APOA5]) and inhibitor
(apolipoprotein C3 [APOC3], angiopoietin-like 4 [ANGPTL4])
proteins—represent an important determinant of human ath-
erosclerosis. Similar approaches have been used to demon-
strate that damaging mutations in APOA5 are associated with
a significant increase in odds of CAD.7,20 By contrast, rare in-
activating mutations in APOC3 and ANGPTL4 confer substan-
tial vascular protection.9,15,16,36 Ongoing research will seek to
clarify the mechanistic interactions between these proteins.
However, in each case, CAD risk is likely to be affected by life-
long alterations in LPL activity. Whether therapy to alter this
pathway will decrease risk of CAD remains unknown.

Figure 1. Association of Damaging Lipoprotein Lipase Gene (LPL) Mutations With Circulating Lipid Concentrations

–20 10 400 3020
Beta Coefficient for Difference,

mg/dL (95% CI)

–10

P Value

Participants, No.

Carriers Noncarriers

Lipid Level, Median (IQR), mg/dL

Carriers NoncarriersLipid Phenotype
Total cholesterol

Beta Coefficient
for Difference,
mg/dL (95% CI)

.9173 16 367 203 (180-236) 203 (173-239)Myocardial Infarction Genetics Consortium 0.7 (–11.1 to 12.5)

.5066 17 111 198 (175-230) 200 (175-229)Geisinger Health System DiscovEHR 3.4 (–6.3 to 12.8)

.65Combined 2.2 (–5.2 to 9.6)
LDL cholesterol

.5669 14 880 120 (104-149) 127 (100-160)Myocardial Infarction Genetics Consortium –3.2 (–13.9 to 7.5)

.4965 16 918 117 (90-140) 119 (97-144)Geisinger Health System DiscovEHR –3.2 (–12.3 to 5.9)

.37Combined –3.2 (–10.1 to 3.7)
HDL cholesterol

.0270 15 303 37 (30-42) 40 (32-50)Myocardial Infarction Genetics Consortium –3.4 (–6.2 to –0.6)

.0266 17 141 45 (38-57) 49 (41-60)Geisinger Health System DiscovEHR –3.9 (–7.1 to –0.7)

.001Combined –3.6 (–5.7 to –1.5)
Triglycerides

.0772 16 128 183 (135-274) 147 (99-217)Myocardial Infarction Genetics Consortium 25.6 (–2.5 to 53.5)

.0666 17 112 133 (109-188) 126 (89-177)Geisinger Health System DiscovEHR 17.2 (–0.5 to 34.9)

.01Combined 19.6 (4.6 to 34.6)
Remnant cholesterol

.0268 14 601 37 (26-54) 30 (20-43)Myocardial Infarction Genetics Consortium 5.2 (0.7 to 9.8)

.0265 16 815 29 (22-42) 26 (17-38)Geisinger Health System DiscovEHR 6.1 (1.1 to 11.2)

.001Combined 5.6 (2.3 to 9.0)

Beta coefficients reflective of the difference in lipid concentrations between
carriers of a damaging LPL mutation and noncarriers were derived from
linear regression models that included adjustment for age, age squared, sex,
cohort, and the first 5 principal components of ancestry. Principal components
of ancestry were based on observed genotypic differences across
subpopulations (eg, race or ethnicity) in the overall study. Inclusion of principal
components as covariates in linear regression analyses increases statistical

power for true relationships and minimizes confounding by ancestry.27

Fixed-effects meta-analysis was used to combine results across cohorts
(P for heterogeneity > .50 for each lipid phenotype). The number of
participants from each study cohort with lipid fraction values available is
displayed. HDL indicates high-density lipoprotein; IQR, interquartile range; and
LDL, low-density lipoprotein. To convert cholesterol to millimoles per liter,
multiply by 0.0259; triglycerides to millimoles per liter, multiply by 0.0113.
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A key strength of the present analysis is that LPL was se-
quenced in a large number of individuals to analyze the entire
spectrum of damaging mutations, each of which was rare in the
population. Second, concordant results were demonstrated be-
tween CAD case-control studies of the Myocardial Infarction
Genetics Consortium and the DiscovEHR study participants
from the Geisinger Health System, in whom CAD status was as-
certained based on EHRs. This reinforces the potential utility
of ongoing efforts such as the UK Biobank and the All of
Us Research Program (a cohort study within the Precision Medi-
cine Initiative), which will facilitate large-scale interrogations
of genetic variants as they relate to human disease.

Several limitations should be acknowledged. The ap-
proach to annotating rare missense variants in LPL using
prediction algorithms and the ClinVar database has been
previously validated and is fully reproducible.7,23 However,
because functional validation of each variant was not per-
formed, this method may have led to misclassification in
some cases. Second, because the effect of LPL activity on
regulation of circulating triglyceride levels is most pro-
nounced following a meal,37 the degree of triglyceride level

elevation among mutation carriers would likely have been
greater if postprandial triglyceride levels were available.
Third, this study assessed the association of LPL mutations
with susceptibility to early-onset CAD; effect estimates might
differ among individuals with later onset of disease. Fourth,
levels of both triglycerides and calculated remnant choles-
terol, the primary lipid components of triglyceride-rich lipo-
proteins, were increased in individuals harboring an LPL
mutation. Because the level of remnant cholesterol was esti-
mated and not directly measured in the present analysis,
additional research is needed to determine the relative con-
tributions of these components to human CAD.

Conclusions
The presence of rare damaging mutations in LPL was signifi-
cantly associated with higher triglyceride levels and pres-
ence of CAD. However, further research is needed to assess
whether there are causal mechanisms by which heterozy-
gous LPL deficiency could lead to CAD.
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In each study, the relationship of rare damaging mutations in LPL with risk of
CAD was determined. P values for association tests and confidence intervals
were determined using exact methods. A meta-analysis across studies was
performed using Cochran-Mantel-Haenszel statistics for stratified 2-by-2 tables.
This method combines score statistics and is particularly useful when some
observed odds ratios are 0. An odds ratio in the Jackson Heart Study (JHS)
cohort was not available (NA) owing to absence of identified carriers of a
damaging LPL mutation. ATVB indicates Atherosclerosis, Thrombosis,
and Vascular Biology Italian Study; DiscovEHR, DiscovEHR project of the
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