600 research outputs found

    Depleted Energy Charge and Increased Pulmonary Endothelial Permeability Induced by Mitochondrial Complex I inhibition are Mitigated by Coenzyme Q\u3csub\u3e1\u3c/sub\u3e in the Isolated Perfused Rat Lung

    Get PDF
    Mitochondrial dysfunction is associated with various forms of lung injury and disease that also involve alterations in pulmonary endothelial permeability, but the relationship, if any, between the two is not well understood. This question was addressed by perfusing isolated intact rat lung with a buffered physiological saline solution in the absence or presence of the mitochondrial complex I inhibitor rotenone (20 μM). Compared to control, rotenone depressed whole lung tissue ATP from 5.66±0.46 (SEM) to 2.34±0.15 µmol·g−1 dry lung, with concomitant increases in the ADP:ATP and AMP:ATP ratios. Rotenone also increased lung perfusate lactate (from 12.36±1.64 to 38.62±3.14 µmol·15 min−1 perfusion·g−1 dry lung) and the lactate:pyruvate ratio, but had no detectable impact on lung tissue GSH:GSSG redox status. The amphipathic quinone coenzyme Q1 (CoQ1; 50 μM) mitigated the impact of rotenone on the adenine nucleotide balance, wherein mitigation was blocked by NAD(P)H-quinone oxidoreductase 1 or mitochondrial complex III inhibitors. In separate studies, rotenone increased the pulmonary vascular endothelial filtration coefficient (Kf) from 0.043±0.010 to 0.156±0.037 ml·min−1·cm H2O−1·g−1 dry lung, and CoQ1 protected against the effect of rotenone on Kf. A second complex I inhibitor, piericidin A, qualitatively reproduced the impact of rotenone on Kf and the lactate:pyruvate ratio. Taken together, the observations imply that pulmonary endothelial barrier integrity depends on mitochondrial bioenergetics as reflected in lung tissue ATP levels and that compensatory activation of whole lung glycolysis cannot protect against pulmonary endothelial hyperpermeability in response to mitochondrial blockade. The study further suggests that low-molecular-weight amphipathic quinones may have therapeutic utility in protecting lung barrier function in mitochondrial insufficiency

    Rationality in Differential Algebraic Geometry

    Full text link
    Parametric Cartan theory of exterior differential systems, and explicit cohomology of projective manifolds reveal united rationality features of differential algebraic geometry.Comment: Abel Symposium 201

    MicroRNA-24 regulates vascularity after myocardial infarction

    Get PDF
    BACKGROUND: Myocardial infarction leads to cardiac remodeling and development of heart failure. Insufficient myocardial capillary density after myocardial infarction has been identified as a critical event in this process, although the underlying mechanisms of cardiac angiogenesis are mechanistically not well understood. METHODS AND RESULTS: Here, we show that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia. MiR-24 induces endothelial cell apoptosis, abolishes endothelial capillary network formation on Matrigel, and inhibits cell sprouting from endothelial spheroids. These effects are mediated through targeting of the endothelium-enriched transcription factor GATA2 and the p21-activated kinase PAK4, which were identified by bioinformatic predictions and validated by luciferase gene reporter assays. Respective downstream signaling cascades involving phosphorylated BAD (Bcl-XL/Bcl-2-associated death promoter) and Sirtuin1 were identified by transcriptome, protein arrays, and chromatin immunoprecipitation analyses. Overexpression of miR-24 or silencing of its targets significantly impaired angiogenesis in zebrafish embryos. Blocking of endothelial miR-24 limited myocardial infarct size of mice via prevention of endothelial apoptosis and enhancement of vascularity, which led to preserved cardiac function and survival. CONCLUSIONS: Our findings indicate that miR-24 acts as a critical regulator of endothelial cell apoptosis and angiogenesis and is suitable for therapeutic intervention in the setting of ischemic heart disease. [KEYWORDS: Animals, Apoptosis/drug effects, Arterioles/pathology, Capillaries/pathology, Cell Hypoxia, Cells, Cultured/drug effects/metabolism, Collagen, Drug Combinations, Drug Evaluation, Preclinical, Endothelial Cells/ metabolism/pathology, GATA2 Transcription Factor/biosynthesis/genetics, Gene Expression Profiling, Heart Failure/etiology, Heme Oxygenase-1/biosynthesis/genetics, Laminin, Male, Mice, Mice, Inbred C57BL, MicroRNAs/antagonists & inhibitors/genetics/ physiology, Myocardial Infarc

    Antibiotic resistance prediction for Mycobacterium tuberculosis from genome sequence data with Mykrobe [version 1; peer review: 2 approved, 1 approved with reservations]

    Get PDF
    Two billion people are infected with Mycobacterium tuberculosis, leading to 10 million new cases of active tuberculosis and 1.5 million deaths annually. Universal access to drug susceptibility testing (DST) has become a World Health Organization priority. We previously developed a software tool, Mykrobe predictor, which provided offline species identification and drug resistance predictions for M. tuberculosis from whole genome sequencing (WGS) data. Performance was insufficient to support the use of WGS as an alternative to conventional phenotype-based DST, due to mutation catalogue limitations. Here we present a new tool, Mykrobe, which provides the same functionality based on a new software implementation. Improvements include i) an updated mutation catalogue giving greater sensitivity to detect pyrazinamide resistance, ii) support for user-defined resistance catalogues, iii) improved identification of non-tuberculous mycobacterial species, and iv) an updated statistical model for Oxford Nanopore Technologies sequencing data. Mykrobe is released under MIT license at https://github.com/mykrobe-tools/mykrobe. We incorporate mutation catalogues from the CRyPTIC consortium et al. (2018) and from Walker et al. (2015), and make improvements based on performance on an initial set of 3206 and an independent set of 5845 M. tuberculosis Illumina sequences. To give estimates of error rates, we use a prospectively collected dataset of 4362 M. tuberculosis isolates. Using culture based DST as the reference, we estimate Mykrobe to be 100%, 95%, 82%, 99% sensitive and 99%, 100%, 99%, 99% specific for rifampicin, isoniazid, pyrazinamide and ethambutol resistance prediction respectively. We benchmark against four other tools on 10207 (=5845+4362) samples, and also show that Mykrobe gives concordant results with nanopore data. We measure the ability of Mykrobe-based DST to guide personalized therapeutic regimen design in the context of complex drug susceptibility profiles, showing 94% concordance of implied regimen with that driven by phenotypic DST, higher than all other benchmarked tools

    Plant use of the Maasai of Sekenani Valley, Maasai Mara, Kenya

    Get PDF
    Traditional plant use is of tremendous importance in many societies, including most rural African communities. This knowledge is however, rapidly dwindling due to changes towards a more Western lifestyle, and the influence of modern tourism. In case of the Sekenani Maasai, the recent change from a nomadic to a more sedentary lifestyle has not, thus far lead to a dramatic loss of traditional plant knowledge, when compared to other Maasai communities. However, in Sekenani, plants are used much less frequently for manufacturing tools, and for veterinary purposes, than in more remote areas. While the knowledge is still present, overgrazing and over-exploitation of plant resources have already led to a decline of the plant material available. This paper examines the plant use of the Maasai in the Sekenani Valley, North of the Masaai Mara National Reserve. The Maasai pastoralists of Kenya and Tanzania use a large part of the plants in their environment for many uses in daily life. The plant use and knowledge of the Sekenani Maasai is of particular interest, as their clan, the "Il-Purko", was moved from Central Kenya to this region by the British Colonial Administration in 1904. The results of this study indicate that despite their relocation 100 years ago, the local population has an extensive knowledge of the plants in their surroundings, and they ascribe uses to a large percentage of the plants found. One-hundred-fifty-five plant species were collected, identified and their Maa names and traditional uses recorded. Although fifty-one species were reported as of "no use", only eighteen of these had no Maasai name. Thirty-three were recognized by a distinctive Maa name. Thirty-nine species had a medicinal use, and 30 species served as fodder for livestock. Six species could not be identified. Of these plants five were addressed by the Maasai with distinct names. This exemplifies the Sekenani Maasai's in-depth knowledge of the plant resources. Traditionally, the Maasai attribute most illnesses to the effect of pollutants that block or inhibit digestion. These pollutants can include "polluted" food, contact with sick people and witchcraft. In most cases the treatment of illness involves herbal purgatives to cleanse the patient. There are alsofrequent indications of plant use for common problems like wounds, parasites, body aches and burns

    An integrated whole genome analysis of Mycobacterium tuberculosis reveals insights into relationship between its genome, transcriptome and methylome.

    Get PDF
    Human tuberculosis disease (TB), caused by Mycobacterium tuberculosis (Mtb), is a complex disease, with a spectrum of outcomes. Genomic, transcriptomic and methylation studies have revealed differences between Mtb lineages, likely to impact on transmission, virulence and drug resistance. However, so far no studies have integrated sequence-based genomic, transcriptomic and methylation characterisation across a common set of samples, which is critical to understand how DNA sequence and methylation affect RNA expression and, ultimately, Mtb pathogenesis. Here we perform such an integrated analysis across 22 M. tuberculosis clinical isolates, representing ancient (lineage 1) and modern (lineages 2 and 4) strains. The results confirm the presence of lineage-specific differential gene expression, linked to specific SNP-based expression quantitative trait loci: with 10 eQTLs involving SNPs in promoter regions or transcriptional start sites; and 12 involving potential functional impairment of transcriptional regulators. Methylation status was also found to have a role in transcription, with evidence of differential expression in 50 genes across lineage 4 samples. Lack of methylation was associated with three novel variants in mamA, likely to cause loss of function of this enzyme. Overall, our work shows the relationship of DNA sequence and methylation to RNA expression, and differences between ancient and modern lineages. Further studies are needed to verify the functional consequences of the identified mechanisms of gene expression regulation

    Ewing Sarcoma Protein Ewsr1 Maintains Mitotic Integrity and Proneural Cell Survival in the Zebrafish Embryo

    Get PDF
    BACKGROUND:The Ewing sarcoma breakpoint region 1 gene (EWSR1), also known as EWS, is fused to a number of different partner genes as a result of chromosomal translocation in diverse sarcomas. Despite the involvement of EWSR1 in these diverse sarcomas, the in vivo function of wild type EWSR1 remains unclear. PRINCIPAL FINDINGS:We identified two zebrafish EWSR1 orthologues, ewsr1a and ewsr1b, and demonstrate that both genes are expressed maternally, and are expressed ubiquitously throughout zebrafish embryonic development. Morpholino induced knockdown of both zebrafish ewsr1 genes led to mitotic defects with multipolar or otherwise abnormal mitotic spindles starting from the bud stage (10 hour post-fertilization (hpf)). The abnormalities in mitotic spindles were followed by p53-mediated apoptosis in the developing central nervous system (CNS) leading to a reduction in the number of proneural cells, disorganization of neuronal networks, and embryonic lethality by 5 days post-fertilization. siRNA silencing of EWSR1 in Hela cells resulted in mitotic defects accompanied by apoptotic cell death, indicating that the role of EWSR1 is conserved between zebrafish and human. CONCLUSIONS:Ewsr1 maintains mitotic integrity and proneural cell survival in early zebrafish development

    The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis.

    Get PDF
    Global tuberculosis incidence has declined marginally over the past decade, and tuberculosis remains out of control in several parts of the world including Africa and Asia. Although tuberculosis control has been effective in some regions of the world, these gains are threatened by the increasing burden of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. XDR tuberculosis has evolved in several tuberculosis-endemic countries to drug-incurable or programmatically incurable tuberculosis (totally drug-resistant tuberculosis). This poses several challenges similar to those encountered in the pre-chemotherapy era, including the inability to cure tuberculosis, high mortality, and the need for alternative methods to prevent disease transmission. This phenomenon mirrors the worldwide increase in antimicrobial resistance and the emergence of other MDR pathogens, such as malaria, HIV, and Gram-negative bacteria. MDR and XDR tuberculosis are associated with high morbidity and substantial mortality, are a threat to health-care workers, prohibitively expensive to treat, and are therefore a serious public health problem. In this Commission, we examine several aspects of drug-resistant tuberculosis. The traditional view that acquired resistance to antituberculous drugs is driven by poor compliance and programmatic failure is now being questioned, and several lines of evidence suggest that alternative mechanisms-including pharmacokinetic variability, induction of efflux pumps that transport the drug out of cells, and suboptimal drug penetration into tuberculosis lesions-are likely crucial to the pathogenesis of drug-resistant tuberculosis. These factors have implications for the design of new interventions, drug delivery and dosing mechanisms, and public health policy. We discuss epidemiology and transmission dynamics, including new insights into the fundamental biology of transmission, and we review the utility of newer diagnostic tools, including molecular tests and next-generation whole-genome sequencing, and their potential for clinical effectiveness. Relevant research priorities are highlighted, including optimal medical and surgical management, the role of newer and repurposed drugs (including bedaquiline, delamanid, and linezolid), pharmacokinetic and pharmacodynamic considerations, preventive strategies (such as prophylaxis in MDR and XDR contacts), palliative and patient-orientated care aspects, and medicolegal and ethical issues

    Genomic Targets of Brachyury (T) in Differentiating Mouse Embryonic Stem Cells

    Get PDF
    The T-box transcription factor Brachyury (T) is essential for formation of the posterior mesoderm and the notochord in vertebrate embryos. Work in the frog and the zebrafish has identified some direct genomic targets of Brachyury, but little is known about Brachyury targets in the mouse.Here we use chromatin immunoprecipitation and mouse promoter microarrays to identify targets of Brachyury in embryoid bodies formed from differentiating mouse ES cells. The targets we identify are enriched for sequence-specific DNA binding proteins and include components of signal transduction pathways that direct cell fate in the primitive streak and tailbud of the early embryo. Expression of some of these targets, such as Axin2, Fgf8 and Wnt3a, is down regulated in Brachyury mutant embryos and we demonstrate that they are also Brachyury targets in the human. Surprisingly, we do not observe enrichment of the canonical T-domain DNA binding sequence 5'-TCACACCT-3' in the vicinity of most Brachyury target genes. Rather, we have identified an (AC)(n) repeat sequence, which is conserved in the rat but not in human, zebrafish or Xenopus. We do not understand the significance of this sequence, but speculate that it enhances transcription factor binding in the regulatory regions of Brachyury target genes in rodents.Our work identifies the genomic targets of a key regulator of mesoderm formation in the early mouse embryo, thereby providing insights into the Brachyury-driven genetic regulatory network and allowing us to compare the function of Brachyury in different species
    • …
    corecore