898 research outputs found

    Multielement polynomial chaos Kriging-based metamodelling for Bayesian inference of non-smooth systems

    Get PDF
    This paper presents a surrogate modelling technique based on domain partitioning for Bayesian parameter inference of highly nonlinear engineering models. In order to alleviate the computational burden typically involved in Bayesian inference applications, a multielement Polynomial Chaos Expansion based Kriging metamodel is proposed. The developed surrogate model combines in a piecewise function an array of local Polynomial Chaos based Kriging metamodels constructed on a finite set of non-overlapping subdomains of the stochastic input space. Therewith, the presence of non-smoothness in the response of the forward model (e.g.~ nonlinearities and sparseness) can be reproduced by the proposed metamodel with minimum computational costs owing to its local adaptation capabilities. The model parameter inference is conducted through a Markov chain Monte Carlo approach comprising adaptive exploration and delayed rejection. The efficiency and accuracy of the proposed approach are validated through two case studies, including an analytical benchmark and a numerical case study. The latter relates the partial differential equation governing the hydrogen diffusion phenomenon of metallic materials in Thermal Desorption Spectroscopy tests

    Long-Term Adherence to IFN Beta-1a Treatment when Using RebiSmart® Device in Patients with Relapsing-Remitting Multiple Sclerosis

    Get PDF
    The effectiveness of disease-modifying drugs in the treatment of multiple sclerosis is associated with adherence. RebiSmart (R) electronic device provides useful information about adherence to the treatment with subcutaneous (sc) interferon (IFN) beta-1 alpha (Rebif (R)). The aim of the study was to determine long-term adherence to this treatment in patients with relapsing-remitting multiple sclerosis (RRMS). This retrospective multicentre observational study analysed 258 patients with RRMS who were receiving sc IFN beta-1 alpha (Rebif (R)) treatment by using RebiSmart (R) until replacement (36 months maximum lifetime) or treatment discontinuation. Adherence was calculated with data (injection dosage, time, and date) automatically recorded by RebiSmart (R). Patients in the study had a mean age of 41 years with a female proportion of 68%. Mean EDSS score at start of treatment was 1.8 (95% CI, 1.6-1.9). Overall adherence was 92.6%(95% CI, 90.6-94.5%). A total of 30.2% of patients achieved an adherence rate of 100%, 80.6% at least 90%, and only 13.2% of patients showed a suboptimal adherence (<80%). A total of 59.9% of subjects were relapse-free after treatment initiation. Among 106 subjects (41.1%) who experienced, on average, 1.4 relapses, the majority were mild (40.6%) or moderate (47.2%). Having experienced relapses from the beginning of the treatment was the only variable significantly related to achieving an adherence of at least 80% (OR = 3.06, 1.28-7.31). Results of this study indicate that sc IFN beta-1 alpha administration facilitated by RebiSmart (R) could lead to high rates of adherence to a prescribed dose regimen over 36 months

    A Mathematical Model to Study the Meningococcal Meningitis

    Get PDF
    AbstractThe main goal of this work is to introduce a novel mathematical model to study the spreading of meningococcal meningitis. Specifically, it is a discrete mathematical model based on cellular automata where the population is divided in five classes: sus- ceptible, asymptomatic infected, infected with symptoms, carriers, recovered and died. It catches the individual characteristics of people in order to give a prediction of both the individual behavior, and whole evolution of population

    Alternative symplectic structures for SO(3,1) and SO(4) four-dimensional BF theories

    Full text link
    The most general action, quadratic in the B fields as well as in the curvature F, having SO(3,1) or SO(4) as the internal gauge group for a four-dimensional BF theory is presented and its symplectic geometry is displayed. It is shown that the space of solutions to the equations of motion for the BF theory can be endowed with symplectic structures alternative to the usual one. The analysis also includes topological terms and cosmological constant. The implications of this fact for gravity are briefly discussed.Comment: 13 pages, LaTeX file, no figure

    Las aventuras de Gorgos

    Get PDF
    El presente escrito es la historia de un dinosaurios tipo terópodo, el Gorgosaurus, descritos como carroñeros o cazadores, emparentado con los Tyranosaurus. Vivió en los Ecosistemas característicos del Cretácico Superior, en áreas inundables como los manglares, abundantes en las costas del Noreste de México y dominado por otros dinosaurios como Albertosauridos, Chasmosauridos, hadrosauridos y trodontidos. Esta historia se inicia en un día de cacería de Gorgos y su manada, lo acompañaban su Hermana Gunta y su primo Lori y Barbos y Guaymar los miembros más pequeños de la manada

    Female-female competition is influenced by forehead patch expression in pied flycatcher females

    Get PDF
    There is increasing evidence that sexual selection operates in females and not only in males. However, the function of female signals in intrasexual competition has been little studied in species with conventional sex roles. In the Iberian populations of the pied flycatcher (Ficedula hypoleuca), some females express a white forehead patch, a trait that in other European populations, only males exhibit and has become a classical example in studies of sexual selection. Here, we investigated whether the expression of this trait plays a role in female-female competition during early breeding stages. To test this hypothesis, we simulated territorial intrusions by challenging resident females with stuffed female decoys expressing or not a forehead patch. We found that resident females directed more attacks per trial and maintained closer distances to non-patched decoys than to patched ones. Also, patched females were more likely to attack the decoy than non-patched females. Interestingly, females were more aggressive against the decoys when their mate was absent. This may indicate that females relax territory vigilance in the presence of their mate or that males interfere in the interaction between competing females. The behavior of resident males was also observed, although it was not affected by decoy's patch expression. Our findings suggest that the forehead patch plays a role in female intrasexual competition. If the forehead patch signals fighting ability, as it does in males, we may interpret that non-patched females probably avoided repeating costly agonistic encounters with the most dominant rivals.Fil: Morales, J.. Consejo Superior de Investigaciones Científicas. Museo Nacional de Ciencias Naturales; EspañaFil: Gordo, O.. Consejo Superior de Investigaciones Científicas. Museo Nacional de Ciencias Naturales; España. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Lobato, E.. Consejo Superior de Investigaciones Científicas. Museo Nacional de Ciencias Naturales; España. Cibio - Centro de Investigação Em Biodiversidade E Recursos Genéticos; PortugalFil: Ippi, Silvina Graciela. Universidad Nacional del Comahue. Centro Reg.universidad Bariloche. Departamento de Zoología. Cátedra de Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Martínez de la Puente, J.. Consejo Superior de Investigaciones Científicas. Museo Nacional de Ciencias Naturales; España. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Tomás, G.. Consejo Superior de Investigaciones Científicas. Museo Nacional de Ciencias Naturales; EspañaFil: Merino, S.. Consejo Superior de Investigaciones Científicas. Museo Nacional de Ciencias Naturales; EspañaFil: Moreno, J.. Consejo Superior de Investigaciones Científicas. Museo Nacional de Ciencias Naturales; Españ

    Gahnite, chrysoberyl and beryl co-occurrence as accessory minerals in a highly evolved peraluminous pluton: The Belvís de Monroy leucogranite (Cáceres, Spain)

    Get PDF
    Gahnite (ZnAl2O4), chrysoberyl (BeAl2O4) and beryl (Be3Al2Si6O18) have been found as accessory minerals in the external, highly fractionated, leucogranitic unit within the Hercynian reversely zoned Belvís de Monroy pluton (westernmost part of the Montes de Toledo batholith, Cáceres, Spain). The highly felsic (SiO2 > 72 wt.%) and peraluminous (ACNK > 1.2) character of this leucogranite, together with the high content of some incompatible elements (F, Li, B, and P), seems to be a primary consequence of fractional crystallization in a magmatic closedsystem. The high Be contents and Zn/FeTotal ratio (>0.01) are relevant factors which have favoured the precipitation of these minerals. Moreover, the Si, Al, P, B, and F activities might be high, favouring the magmatic crystallization of such exotic mineral phases together with Be-rich cordierite, F-rich micas, sillimanite and Alrich phosphates. In fact, the interplay between the silica and alumina activities likely controls the stabilization and the preferential crystallization of gahnite + chrysoberyl or beryl + chrysoberyl assemblages in mm-sized microdomains. The P–T crystallization conditions are constrained by the muscovite and sillimanite stability fields and the minimum granite Al2O3-saturated solidus, and have been estimated at temperatures between 670 and 700 °C, and pressures between 1 and 2 kbar

    Drug delivery nanosystems for the localized treatment of glioblastoma multiforme

    Get PDF
    [EN] Glioblastoma multiforme is one of the most prevalent and malignant forms of central nervous system tumors. The treatment of glioblastoma remains a great challenge due to its location in the intracranial space and the presence of the blood-brain tumor barrier. There is an urgent need to develop novel therapy approaches for this tumor, to improve the clinical outcomes, and to reduce the rate of recurrence and adverse effects associated with present options. The formulation of therapeutic agents in nanostructures is one of the most promising approaches to treat glioblastoma due to the increased availability at the target site, and the possibility to co-deliver a range of drugs and diagnostic agents. Moreover, the local administration of nanostructures presents significant additional advantages, since it overcomes blood-brain barrier penetration issues to reach higher concentrations of therapeutic agents in the tumor area with minimal side effects. In this paper, we aim to review the attempts to develop nanostructures as local drug delivery systems able to deliver multiple agents for both therapeutic and diagnostic functions for the management of glioblastoma.This research was funded by an Ussher start-up funding award (School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin) and the European Union’s Horizon 2020 research and innovation program under Grant agreement No. 708036.Nam, L.; Coll Merino, MC.; Erthal, L.; De La Torre-Paredes, C.; Serrano, D.; Martínez-Máñez, R.; Santos-Martinez, M.... (2018). Drug delivery nanosystems for the localized treatment of glioblastoma multiforme. Materials. 11(5). https://doi.org/10.3390/ma11050779S115Goodenberger, M. L., & Jenkins, R. B. (2012). Genetics of adult glioma. Cancer Genetics, 205(12), 613-621. doi:10.1016/j.cancergen.2012.10.009Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., … Kleihues, P. (2007). The 2007 WHO Classification of Tumours of the Central Nervous System. Acta Neuropathologica, 114(2), 97-109. doi:10.1007/s00401-007-0243-4Gutkin, A., Cohen, Z. R., & Peer, D. (2016). Harnessing nanomedicine for therapeutic intervention in glioblastoma. Expert Opinion on Drug Delivery, 13(11), 1573-1582. doi:10.1080/17425247.2016.1200557Omuro, A. (2013). Glioblastoma and Other Malignant Gliomas. JAMA, 310(17), 1842. doi:10.1001/jama.2013.280319Wang, Y., & Jiang, T. (2013). Understanding high grade glioma: Molecular mechanism, therapy and comprehensive management. Cancer Letters, 331(2), 139-146. doi:10.1016/j.canlet.2012.12.024Gallego, O. (2015). Nonsurgical treatment of recurrent glioblastoma. Current Oncology, 22(4), 273. doi:10.3747/co.22.2436Carlsson, S. K., Brothers, S. P., & Wahlestedt, C. (2014). Emerging treatment strategies for glioblastoma multiforme. EMBO Molecular Medicine, 6(11), 1359-1370. doi:10.15252/emmm.201302627Yamasaki, F., Kurisu, K., Satoh, K., Arita, K., Sugiyama, K., Ohtaki, M., … Thohar, M. A. (2005). Apparent Diffusion Coefficient of Human Brain Tumors at MR Imaging. Radiology, 235(3), 985-991. doi:10.1148/radiol.2353031338Gupta, A., Young, R. J., Shah, A. D., Schweitzer, A. D., Graber, J. J., Shi, W., … Omuro, A. M. P. (2014). Pretreatment Dynamic Susceptibility Contrast MRI Perfusion in Glioblastoma: Prediction of EGFR Gene Amplification. Clinical Neuroradiology, 25(2), 143-150. doi:10.1007/s00062-014-0289-3Fakhoury, M. (2015). Drug delivery approaches for the treatment of glioblastoma multiforme. Artificial Cells, Nanomedicine, and Biotechnology, 44(6), 1365-1373. doi:10.3109/21691401.2015.1052467Štolc, S., Jakubíková, L., & Kukurová, I. (2011). Body distribution of 11C-methionine and 18FDG in rat measured by microPET. Interdisciplinary Toxicology, 4(1). doi:10.2478/v10102-011-0010-1Galldiks, N., Dunkl, V., Kracht, L. W., Vollmar, S., Jacobs, A. H., Fink, G. R., & Schroeter, M. (2012). Volumetry of [11C]-Methionine Positron Emission Tomographic Uptake as a Prognostic Marker before Treatment of Patients with Malignant Glioma. Molecular Imaging, 11(6), 7290.2012.00022. doi:10.2310/7290.2012.00022Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., … Ellison, D. W. (2016). The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica, 131(6), 803-820. doi:10.1007/s00401-016-1545-1Martínez-Garcia, M., Álvarez-Linera, J., Carrato, C., Ley, L., Luque, R., Maldonado, X., … Gil-Gil, M. (2017). SEOM clinical guidelines for diagnosis and treatment of glioblastoma (2017). Clinical and Translational Oncology, 20(1), 22-28. doi:10.1007/s12094-017-1763-6WILSON, C. B. (1964). Glioblastoma Multiforme. Archives of Neurology, 11(5), 562. doi:10.1001/archneur.1964.00460230112012Juratli, T. A., Schackert, G., & Krex, D. (2013). Current status of local therapy in malignant gliomas — A clinical review of three selected approaches. Pharmacology & Therapeutics, 139(3), 341-358. doi:10.1016/j.pharmthera.2013.05.003Westphal, M., Hilt, D. C., Bortey, E., Delavault, P., Olivares, R., Warnke, P. C., … Ram, Z. (2003). A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-Oncology, 5(2), 79-88. doi:10.1093/neuonc/5.2.79Chamberlain, M., Rhun, E., & Taillibert, S. (2015). The future of high-grade glioma: Where we are and where are we going. Surgical Neurology International, 6(2), 9. doi:10.4103/2152-7806.151331Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J. B., … Mirimanoff, R. O. (2005). Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine, 352(10), 987-996. doi:10.1056/nejmoa043330Lee, C. Y. (2017). Strategies of temozolomide in future glioblastoma treatment. OncoTargets and Therapy, Volume 10, 265-270. doi:10.2147/ott.s120662Mun, E. J., Babiker, H. M., Weinberg, U., Kirson, E. D., & Von Hoff, D. D. (2017). Tumor-Treating Fields: A Fourth Modality in Cancer Treatment. Clinical Cancer Research, 24(2), 266-275. doi:10.1158/1078-0432.ccr-17-1117Stupp, R., Taillibert, S., Kanner, A., Kesari, S., Toms, S. A., Barnett, G. H., … Ram, Z. (2015). Tumor treating fields (TTFields): A novel treatment modality added to standard chemo- and radiotherapy in newly diagnosed glioblastoma—First report of the full dataset of the EF14 randomized phase III trial. Journal of Clinical Oncology, 33(15_suppl), 2000-2000. doi:10.1200/jco.2015.33.15_suppl.2000Bernard-Arnoux, F., Lamure, M., Ducray, F., Aulagner, G., Honnorat, J., & Armoiry, X. (2016). The cost-effectiveness of tumor-treating fields therapy in patients with newly diagnosed glioblastoma. Neuro-Oncology, 18(8), 1129-1136. doi:10.1093/neuonc/now102Stupp, R., Hegi, M. E., Mason, W. P., van den Bent, M. J., Taphoorn, M. J., Janzer, R. C., … Mirimanoff, R.-O. (2009). Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. The Lancet Oncology, 10(5), 459-466. doi:10.1016/s1470-2045(09)70025-7Preusser, M., de Ribaupierre, S., Wöhrer, A., Erridge, S. C., Hegi, M., Weller, M., & Stupp, R. (2011). Current concepts and management of glioblastoma. Annals of Neurology, 70(1), 9-21. doi:10.1002/ana.22425FDA Grants Genentech’s Avastin Full Approval for Most Aggressive Form of Brain Cancerhttps://www.gene.com/media/press-releases/14695/2017-12-05/fda-grants-genentechs-avastin-full-approWick, W., Stupp, R., Gorlia, T., Bendszus, M., Sahm, F., Bromberg, J. E., … Van Den Bent, M. J. (2016). Phase II part of EORTC study 26101: The sequence of bevacizumab and lomustine in patients with first recurrence of a glioblastoma. Journal of Clinical Oncology, 34(15_suppl), 2019-2019. doi:10.1200/jco.2016.34.15_suppl.2019Liu, W.-Y., Wang, Z.-B., Zhang, L.-C., Wei, X., & Li, L. (2012). Tight Junction in Blood-Brain Barrier: An Overview of Structure, Regulation, and Regulator Substances. CNS Neuroscience & Therapeutics, 18(8), 609-615. doi:10.1111/j.1755-5949.2012.00340.xRonaldson, P. T., & Davis, T. P. (2011). Targeting blood–brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery. Therapeutic Delivery, 2(8), 1015-1041. doi:10.4155/tde.11.67S. Hersh, D., S. Wadajkar, A., B. Roberts, N., G. Perez, J., P. Connolly, N., Frenkel, V., … J. Kim, A. (2016). Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Current Pharmaceutical Design, 22(9), 1177-1193. doi:10.2174/1381612822666151221150733Patel, M. M., Goyal, B. R., Bhadada, S. V., Bhatt, J. S., & Amin, A. F. (2009). Getting into the Brain. CNS Drugs, 23(1), 35-58. doi:10.2165/0023210-200923010-00003Clark, D. E. (2003). In silico prediction of blood–brain barrier permeation. Drug Discovery Today, 8(20), 927-933. doi:10.1016/s1359-6446(03)02827-7Gleeson, M. P. (2008). Generation of a Set of Simple, Interpretable ADMET Rules of Thumb. Journal of Medicinal Chemistry, 51(4), 817-834. doi:10.1021/jm701122qHervé, F., Ghinea, N., & Scherrmann, J.-M. (2008). CNS Delivery Via Adsorptive Transcytosis. The AAPS Journal, 10(3), 455-472. doi:10.1208/s12248-008-9055-2Van Tellingen, O., Yetkin-Arik, B., de Gooijer, M. C., Wesseling, P., Wurdinger, T., & de Vries, H. E. (2015). Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resistance Updates, 19, 1-12. doi:10.1016/j.drup.2015.02.002Ostermann, S. (2004). Plasma and Cerebrospinal Fluid Population Pharmacokinetics of Temozolomide in Malignant Glioma Patients. Clinical Cancer Research, 10(11), 3728-3736. doi:10.1158/1078-0432.ccr-03-0807Laquintana, V., Trapani, A., Denora, N., Wang, F., Gallo, J. M., & Trapani, G. (2009). New strategies to deliver anticancer drugs to brain tumors. Expert Opinion on Drug Delivery, 6(10), 1017-1032. doi:10.1517/17425240903167942Zhan, C., Gu, B., Xie, C., Li, J., Liu, Y., & Lu, W. (2010). Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. Journal of Controlled Release, 143(1), 136-142. doi:10.1016/j.jconrel.2009.12.020Kondo, Y., Kondo, S., Tanaka, Y., Haqqi, T., Barna, B. P., & Cowell, J. K. (1998). Inhibition of telomerase increases the susceptibility of human malignant glioblastoma cells to cisplatin-induced apoptosis. Oncogene, 16(17), 2243-2248. doi:10.1038/sj.onc.1201754Wang, P. P., Frazier, J., & Brem, H. (2002). Local drug delivery to the brain. Advanced Drug Delivery Reviews, 54(7), 987-1013. doi:10.1016/s0169-409x(02)00054-6De Souza, R., Zahedi, P., Allen, C. J., & Piquette-Miller, M. (2010). Polymeric drug delivery systems for localized cancer chemotherapy. Drug Delivery, 17(6), 365-375. doi:10.3109/10717541003762854Wolinsky, J. B., Colson, Y. L., & Grinstaff, M. W. (2012). Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers. Journal of Controlled Release, 159(1), 14-26. doi:10.1016/j.jconrel.2011.11.031Chakroun, R. W., Zhang, P., Lin, R., Schiapparelli, P., Quinones-Hinojosa, A., & Cui, H. (2017). Nanotherapeutic systems for local treatment of brain tumors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 10(1), e1479. doi:10.1002/wnan.1479Mathios, D., Kim, J. E., Mangraviti, A., Phallen, J., Park, C.-K., Jackson, C. M., … Lim, M. (2016). Anti-PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM. Science Translational Medicine, 8(370), 370ra180-370ra180. doi:10.1126/scitranslmed.aag2942Chaichana, K. L., Pinheiro, L., & Brem, H. (2015). Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas. Therapeutic Delivery, 6(3), 353-369. doi:10.4155/tde.14.114Patchell, R. A., Regine, W. F., Ashton, P., Tibbs, P. A., Wilson, D., Shappley, D., & Young, B. (2002). Journal of Neuro-Oncology, 60(1), 37-42. doi:10.1023/a:1020291229317Hassenbusch, S. J., Nardone, E. M., Levin, V. A., Leeds, N., & Pietronigro, D. (2003). Stereotactic Injection of DTI-015 into Recurrent Malignant Gliomas: Phase I/II Trial. Neoplasia, 5(1), 9-16. doi:10.1016/s1476-5586(03)80012-xBoiardi, A., Eoli, M., Salmaggi, A., Zappacosta, B., Fariselli, L., Milanesi, I., … Silvani, A. (2001). Journal of Neuro-Oncology, 54(1), 39-47. doi:10.1023/a:1012510513780Lidar, Z., Mardor, Y., Jonas, T., Pfeffer, R., Faibel, M., Nass, D., … Ram, Z. (2004). Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a Phase I/II clinical study. Journal of Neurosurgery, 100(3), 472-479. doi:10.3171/jns.2004.100.3.0472Bruce, J. N., Fine, R. L., Canoll, P., Yun, J., Kennedy, B. C., Rosenfeld, S. S., … DeLaPaz, R. L. (2011). Regression of Recurrent Malignant Gliomas With Convection-Enhanced Delivery of Topotecan. Neurosurgery, 69(6), 1272-1280. doi:10.1227/neu.0b013e3182233e24Carpentier, A., Metellus, P., Ursu, R., Zohar, S., Lafitte, F., Barrie, M., … Carpentier, A. F. (2010). Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro-Oncology, 12(4), 401-408. doi:10.1093/neuonc/nop047Bogdahn, U., Hau, P., Stockhammer, G., Venkataramana, N. K., Mahapatra, A. K., … Suri, A. (2010). Targeted therapy for high-grade glioma with the TGF- 2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro-Oncology, 13(1), 132-142. doi:10.1093/neuonc/noq142Iwamoto, F. M., Lamborn, K. R., Robins, H. I., Mehta, M. P., Chang, S. M., Butowski, N. A., … Fine, H. A. (2010). Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro-Oncology, 12(8), 855-861. doi:10.1093/neuonc/noq025Brem, S., Tyler, B., Li, K., Pradilla, G., Legnani, F., Caplan, J., & Brem, H. (2007). Local delivery of temozolomide by biodegradable polymers is superior to oral administration in a rodent glioma model. Cancer Chemotherapy and Pharmacology, 60(5), 643-650. doi:10.1007/s00280-006-0407-2Recinos, V. R., Tyler, B. M., Bekelis, K., Sunshine, S. B., Vellimana, A., Li, K. W., & Brem, H. (2010). Combination of Intracranial Temozolomide With Intracranial Carmustine Improves Survival When Compared With Either Treatment Alone in a Rodent Glioma Model. Neurosurgery, 66(3), 530-537. doi:10.1227/01.neu.0000365263.14725.39Storm, P. B., Moriarity, J. L., Tyler, B., Burger, P. C., Brem, H., & Weingart, J. (2002). Journal of Neuro-Oncology, 56(3), 209-217. doi:10.1023/a:1015003232713Scott, A. W., Tyler, B. M., Masi, B. C., Upadhyay, U. M., Patta, Y. R., Grossman, R., … Cima, M. J. (2011). Intracranial microcapsule drug delivery device for the treatment of an experimental gliosarcoma model. Biomaterials, 32(10), 2532-2539. doi:10.1016/j.biomaterials.2010.12.020Kim, G. Y., Tyler, B. M., Tupper, M. M., Karp, J. M., Langer, R. S., Brem, H., & Cima, M. J. (2007). Resorbable polymer microchips releasing BCNU inhibit tumor growth in the rat 9L flank model. Journal of Controlled Release, 123(2), 172-178. doi:10.1016/j.jconrel.2007.08.003Masi, B. C., Tyler, B. M., Bow, H., Wicks, R. T., Xue, Y., Brem, H., … Cima, M. J. (2012). Intracranial MEMS based temozolomide delivery in a 9L rat gliosarcoma model. Biomaterials, 33(23), 5768-5775. doi:10.1016/j.biomaterials.2012.04.048Li, X., Tsibouklis, J., Weng, T., Zhang, B., Yin, G., Feng, G., … Mikhalovsky, S. V. (2016). Nano carriers for drug transport across the blood–brain barrier. Journal of Drug Targeting, 25(1), 17-28. doi:10.1080/1061186x.2016.1184272Mangraviti, A., Gullotti, D., Tyler, B., & Brem, H. (2016). Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies. Journal of Controlled Release, 240, 443-453. doi:10.1016/j.jconrel.2016.03.031Torchilin, V. P. (2009). Passive and Active Drug Targeting: Drug Delivery to Tumors as an Example. Handbook of Experimental Pharmacology, 3-53. doi:10.1007/978-3-642-00477-3_1Rippe, B., Rosengren, B.-I., Carlsson, O., & Venturoli, D. (2002). Transendothelial Transport: The Vesicle Controversy. Journal of Vascular Research, 39(5), 375-390. doi:10.1159/000064521Hobbs, S. K., Monsky, W. L., Yuan, F., Roberts, W. G., Griffith, L., Torchilin, V. P., & Jain, R. K. (1998). Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proceedings of the National Academy of Sciences, 95(8), 4607-4612. doi:10.1073/pnas.95.8.4607Lammers, T., Kiessling, F., Hennink, W. E., & Storm, G. (2012). Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. Journal of Controlled Release, 161(2), 175-187. doi:10.1016/j.jconrel.2011.09.063Danhier, F. (2016). To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? Journal of Controlled Release, 244, 108-121. doi:10.1016/j.jconrel.2016.11.015Petros, R. A., & DeSimone, J. M. (2010). Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 9(8), 615-627. doi:10.1038/nrd2591Chouly, C., Pouliquen, D., Lucet, I., Jeune, J. J., & Jallet, P. (1996). Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. Journal of Microencapsulation, 13(3), 245-255. doi:10.3109/02652049609026013OWENSIII, D., & PEPPAS, N. (2006). Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics, 307(1), 93-102. doi:10.1016/j.ijpharm.2005.10.010Salvador-Morales, C., Zhang, L., Langer, R., & Farokhzad, O. C. (2009). Immunocompatibility properties of lipid–polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials, 30(12), 2231-2240. doi:10.1016/j.biomaterials.2009.01.005Zhan, C., & Lu, W. (2012). The Blood-Brain/Tumor Barriers: Challenges and Chances for Malignant Gliomas Targeted Drug Delivery. Current Pharmaceutical Biotechnology, 13(12), 2380-2387. doi:10.2174/138920112803341798Steiniger, S. C. J., Kreuter, J., Khalansky, A. S., Skidan, I. N., Bobruskin, A. I., Smirnova, Z. S., … Gelperina, S. E. (2004). Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. International Journal of Cancer, 109(5), 759-767. doi:10.1002/ijc.20048Wohlfart, S., Khalansky, A. S., Bernreuther, C., Michaelis, M., Cinatl, J., Glatzel, M., & Kreuter, J. (2011). Treatment of glioblastoma with poly(isohexyl cyanoacrylate) nanoparticles. International Journal of Pharmaceutics, 415(1-2), 244-251. doi:10.1016/j.ijpharm.2011.05.046Zanotto-Filho, A., Coradini, K., Braganhol, E., Schröder, R., de Oliveira, C. M., Simões-Pires, A., … Moreira, J. C. F. (2013). Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. European Journal of Pharmaceutics and Biopharmaceutics, 83(2), 156-167. doi:10.1016/j.ejpb.2012.10.019Gao, H. (2016). Perspectives on Dual Targeting Delivery Systems for Brain Tumors. Journal of Neuroimmune Pharmacology, 12(1), 6-16. doi:10.1007/s11481-016-9687-4Pinto, M. P., Arce, M., Yameen, B., & Vilos, C. (2017). Targeted brain delivery nanoparticles for malignant gliomas. Nanomedicine, 12(1), 59-72. doi:10.2217/nnm-2016-0307Fang, C., Wang, K., Stephen, Z. R., Mu, Q., Kievit, F. M., Chiu, D. T., … Zhang, M. (2015). Temozolomide Nanoparticles for Targeted Glioblastoma Therapy. ACS Applied Materials & Interfaces, 7(12), 6674-6682. doi:10.1021/am5092165Ke, W., Shao, K., Huang, R., Han, L., Liu, Y., Li, J., … Jiang, C. (2009). Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials, 30(36), 6976-6985. doi:10.1016/j.biomaterials.2009.08.049Xin, H., Jiang, X., Gu, J., Sha, X., Chen, L., Law, K., … Fang, X. (2011). Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials, 32(18), 4293-4305. doi:10.1016/j.biomaterials.2011.02.044Zhang, B., Wang, H., Liao, Z., Wang, Y., Hu, Y., Yang, J., … Jiang, X. (2014). EGFP–EGF1-conjugated nanoparticles for targeting both neovascular and glioma cells in therapy of brain glioma. Biomaterials, 35(13), 4133-4145. doi:10.1016/j.biomaterials.2014.01.071Zhang, P., Hu, L., Yin, Q., Feng, L., & Li, Y. (2012). Transferrin-Modified c[RGDfK]-Paclitaxel Loaded Hybrid Micelle for Sequential Blood-Brain Barrier Penetration and Glioma Targeting Therapy. Molecular Pharmaceutics, 9(6), 1590-1598. doi:10.1021/mp200600tMa, D. (2014). Enhancing endosomal escape for nanoparticle mediated siRNA delivery. Nanoscale, 6(12), 6415. doi:10.1039/c4nr00018hShim, M. S., & Kwon, Y. J. (2012). Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Advanced Drug Delivery Reviews, 64(11), 1046-1059. doi:10.1016/j.addr.2012.01.018Zarebkohan, A., Najafi, F., Moghimi, H. R., Hemmati, M., Deevband, M. R., & Kazemi, B. (2015). Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by SRL peptide for targeted gene delivery to the brain. European Journal of Pharmaceutical Sciences, 78, 19-30. doi:10.1016/j.ejps.2015.06.024Hynynen, K., McDannold, N., Vykhodtseva, N., & Jolesz, F. A. (2001). Noninvasive MR Imaging–guided Focal Opening of the Blood-Brain Barrier in Rabbits. Radiology, 220(3), 640-646. doi:10.1148/radiol.2202001804Nance, E., Timbie, K., Miller, G. W., Song, J., Louttit, C., Klibanov, A. L., … Price, R. J. (2014). Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood − brain barrier using MRI-guided focused ultrasound. Journal of Controlled Release, 189, 123-132. doi:10.1016/j.jconrel.2014.06.031Mead,
    corecore