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Abstract

The main goal of this work is to introduce a novel mathematical model to study the spreading of meningococcal meningitis.
Specifically, it is a discrete mathematical model based on cellular automata where the population is divided in five classes: sus-
ceptible, asymptomatic infected, infected with symptoms, carriers, recovered and died. It catches the individual characteristics
of people in order to give a prediction of both the individual behavior, and whole evolution of population.
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1. Introduction

Meningococcal meningitis is a contagious and severe bacterial disease caused by the meningococcus (Neis-
seria meningitidis). It is spread by a close and prolongated contact with an infectious person through the air
via respiratory secretions or sharing of personal items contamitated with this secretions. Neisseria meningitidis
causes the infection of the bloodstream or meninges and has several and varied symptoms: high fever, headache,
vomiting, stiff neck, rash,... If meningitis is not early treated, can lead to swelling of the fluid surrounding the
brain and spinal column as well as severe and permanent disabilities, and even death (it is fatal in the 50%-80% of
untreated cases). Even with an early diagnosis and an adequate treatment, 5% to 10% patients die usually within
24 to 48 hours after the onset of symptoms (see, for example, [1]).

The main characteristic of N. meningitidis is that it is possible to harbor such bacteria in the nose and throat
without any symptoms. Susceptible individuals acquire N. meningitidis through a contact with an infected or
a carrier (asymptomatic) individual; the probability to be colonized in developed countries is estimated to be
0.0009-0.00146. Carriers play a decisive role in spreading of meningococcal disease since the most of infected
cases are acquired through exposure to them. WHO (World Health Organization) estimates that 11% to 25% of
the population carries the bacteria in their throat at any given time (this carriage rate may be higher in epidemic
situations). Once the host is reached by the bacteria, they bond to the cells at the back of the throat and nasal
passage. Infected individual are those in which the bacteria can overwhelm the body’s defenses allowing infection
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to spread through the bloodstream to the meninges (in approximately the 10%-20% of cases). The symptoms may
appear 2-10 days after exposure (usually within 5 days)

Once a successfully diagnosis is made, the antibiotic treatment must be started as soon as possible. Empirical
therapy includes ceftriaxone or cefotaxime, and vancomycin for Streptococcus pneumoniae. There is a vaccine
against meningococcal disease which is 85%-100% effective in preventing four kinds of bacteria (the serogroups
A, C, Y, W-135) that cause about the 70% of the disease in the United States. Efficient vaccines against universal
group B are in late states of development (see [3]). After vaccination, immunity develops within 7-10 days and
remains effective for approximately 3-5 years.

Meningococcal disease is more common in children and young adults. There is also an increased risk of this
disease in some communities that live in closed quarters (college students, military staff, etc.) Other groups at
increased risk include household contacts of an infected person, immuno-compromised persons, etc.

Due to the seriousness of meningococcal disease, it is necessary to develop tools that help the health authorities
to make decisions when an outbreak occurs. In this sense computational tools based on mathematical models
play an important role when simulations and predictions about the future behavior of the disease are required.
Unfortunately there are few works dealing with the design of mathematical models to study the spreading of
meningococcal meningitis. All of them are based on differential equations ([2, 4, 5, 6]) and they exhibit some
drawbacks: they do not take into account the individual characteristics of population, it is not possible to simulate
the behavior of each individual, they are not suitable for computational implementation, etc.

The main goal of this work is to propose a discrete mathematical model in order to design an efficient compu-
tational tool. This model is based on simple models of computation called cellular automata which can simulate
complex phenomena ([7, 8]). This new model can catch the individual characteristics of people giving a prediction
not only of the global dynamics but also of the individual behavior of the disease.

Cellular automata were introduced by J. Von Neumann and S. Ulam in the 50’s and their motivation was
to obtain a better formal understanding of biological systems. A cellular automaton on the (undirected) graph
G = (V, E) is a particular type of finite state machine formed by a set of n memory units called cells which are the
nodes of the graph G. These states change synchronously in discrete time steps accordingly to the local transition
function f . The function f computes the state of every node v at time t + 1, st+1

v ∈ S , from the states of the its
neighbors (adjacent nodes) at the previous time step t, that is: st+1

v = f
(
SN t

i

)
∈ S , where SN t

i is the collection of
states of neighbor cells of the node v at time t, and S is the finite state set.

The rest of the paper is organized as follows: In section 2 the mathematical model to simulate the spreading
of meningococcal disease is shown, and the conclusions are presented in section 3.

2. The proposed model to simulate the meningoccocal disease

2.1. The mathematical formulation of the model

The following assumptions will be taken into account in the proposed model: (i) The proposed model is a
compartmental one: people are divided into different classes attending to the status in relation with the disease:
susceptible (individuals which are susceptible to the disease); infected -with or without symptoms- (individuals
which have been infected by the disease becoming ill); carriers (healthy people which carry the meningococcus
and are infectious); recovered (individuals which have been vaccinated acquiring temporal immunity or which are
free of bacteria), and died (those individual died as a consequence of the disease). (ii) We will focus our attention
on the simulation of meningococcal disease in only one age-group: that one given by children and teenagers. The
carriage rate of this group is higher than other age-group. (iii) The infectious status is acquired immediately after
the infection. (iv) As the period of time passed from the moment of the infection to the moment of the recovery
or decease is a few days, we will suppose the following: (1) The total population is constant (that is, no births are
considered); (2) The carrier status is permanent; and (3) The recovered status is permanent.

The model is based on a probabilistic cellular automaton on graph. In this sense, each individual of the
population stands for a node of the graph and there is an edge between to nodes if the associated individuals
are in contact. The state of the i-th node at time t, st

i, can be S (susceptible), IA (infected without symptoms),
IS (infected with symptoms), C (carrier), R (recovered) or D (died).The local transition rule is defined by the
following considerations: (1) A susceptible individual moves to the carrier (resp. asymptomatic infected) state
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with probability α (resp. β) per contact with an infectious. (2) An asymptomatic infected individual remains in
the same state during the incubation period (Tinc). When the incubation period is finished, the symptoms appear
and the individual becomes symptomatic infected. (3) Let γ be the probability of a symptomatic infected to be
succesfully diagnosed. If an infected individual is treated then he/she recovers with probability 0.9-0.95 in one
day, otherwise (when any treatment is not applied) the recovery rate probability is about 0.5-0.8. Consequently,
the mathematical expression of the local transition function is as follows:

st+1
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S , if st
i = S AND F

(
SN t

i

)
= 0

IA, if
[
st

i = S AND F
(
SN t

i

)
= 1 AND G

(
SN t

i

)
= 1
]

OR
[
st

i = IA AND T t
i ≤ T inc

i

]

IS , if
[
st

i = IA AND T t
i = T inc

i

]
OR
[
st

i = IS AND H
(
SN t

i

)
= 0 AND T̄ t

i ≤ T in f
i

]

C, if
[
st

i = S AND F
(
SN t

i

)
= 1 AND G

(
SN t

i

)
= 0
]

OR st
i = C

R, if st
i = R OR

[
st

i = IS AND H
(
SN t

i

)
= 1
]

D, if
[
st

i = IS AND H
(
SN t

i

)
= 0 AND T̄ t

i > T in f
i

]
OR st

i = D

(1)

where F,G and H are boolean functions determining the appearance of an (asymptomatic) infected individual, a
carrier, or a recovered one, respectively. Specifically, their explicit expressions are the following:

F
(
SN t

i

)
=
∨

j∈Ni
j infected

Xi ∨
∨

k∈Ni
k carrier

Yk, G
(
SN t

i

)
= Ui, H

(
SN t

i

)
= Z, (2)

where Xi, Yi, Z and Ui are random variables following Bernoulli distributions with parameters β, α, γ·ε+0.5·(1−γ)
and δi respectively, where γ is the probability to be treated, 0.9 ≤ ε ≤ 0.95, and 0.1 ≤ δi ≤ 0.2 is the probability
of a colonized individual to get infected (1 − δi is the probability to become a carrier). Furthermore, T inc

i and T in f
i

are the individual incubation period and infective period respectively, and T t
i , T̄

t
i is the time steps from the start of

symptomatic infected status to time t.
The proposed model has been computationally implemented using Mathematica (version number 8). The

parameters of the model are chosen taking into account the characteristics of meningococcal meningitis, that is:
(1) The percentage of carriers will be considered 11%-25%. (2) For every i, set 2 ≤ T inc

i ≤ 10 and 1 ≤ T in f
i ≤ 2. (3)

If an infected individual is treated, the probability to recover is 0.9 ≤ ε ≤ 0.95. (4) If an infected individual is not
treated, the probability to recover, r, is 0.5-0.8 depending on the country. (5) N. meningitidis enters bloodstream
with probability 0.1 ≤ δi ≤ 0.2. In all simulations the population is constant and equal to n = 1000, and we
will assume that the probabilities to be colonized by both, the carriers and the infected individuals, are the same:
α = β = 0.0009 − 0.00146. The probability to be treated (once there is a diagnosis) could be considered γ � 1.

An illustrative simulation is shown in Figure 1. In this example, we consider the case with more similarities
to those studied in the models based on differential equations: the topology of the cellular automata is defined by
means of a complete graph (that is, each individual is in contact with the rest n − 1 individuals of the population).
The evolution of the different classes of population is shown in Figure 1-(a) and they are computed using the
following parameters: γ = 0.75, ε = 0.94, α = β = 0.00135 and r = 0.5.

The simulations obtained allows us to assert the following: (1) If no vaccination procedure is stablished then:
(1) The number of susceptible individuals tend to zero, i.e. all individuals become infected or carriers; and (2)
The number of carriers grows up to the total of population. (2) With an adequate vaccination protocol, the disease
could be controlled as is shown in Figure 1-(b). (3) The carriers play a decisive role in the dynamic of the disease;
in fact, the evolution of the different compartments depend on the evolution of the carrier class: The number of
infected grows and the number of infected decreases as the number of carriers grows. Moreover, if the carriers
could be satisfactorily treated, the disease could be controlled and eradicated as is shown in Figure 1-(c). (4) In
non-developed countries the force of disease is greater than in developed ones. (5) With a suitable treatment, the
deceased rate is small: 2 (resp. 51) died individuals in a population of 1000 in developed countries (resp. non-
developed countries). (6) The last mentioned features are boosted when random contact networks are considered.
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Fig. 1. Simulations of the evolution of a meningococcal disease: Susceptible (green), Infected (orange), Carrier (red), Recovered (blue) and
Died (black). (a) Evolution of the different classes of population; (b) Evolution of the disease when there is a successfully vaccination protocol
of 25% of susceptible individuals from t = 0. (c) Evolution of the disease when the 25% of carriers are successfully treated for t > 10.

3. Conclusions

In this work a novel mathematical model to simulate the spreading of meningococcal meningitis is introduced.
It is based on the use of cellular automata on graphs. The most important characteristics of this model are the
following: (1) Due to the discrete nature of the mathematical objects involved in the algorithm, the computational
implementation of the model is simple and efficient. (2) Both the global and the individual behavior of the disease
can be predict. (3) The simulations obtained agree with empirical predictions regarding with the basic role played
by the carriers.
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