9,694 research outputs found

    Comparative thermal analysis of alternate Cryogenic Fluid Management Experiment (CFME) configurations

    Get PDF
    The Cryogenic Fluid Management Experiment (CFME) was analyzed to assess the feasibility and advisability of deleting the vapor cooled shield (VCS) from the baseline CFME insulation and pressure control system. Two alternate concepts of CFME insulation and pressure control, neither of which incorporated the VCS, were investigated. The first concept employed a thermodynamic vent system (TVS) to throttle the flow through an internal wall mounted heat exchanger (HX) within the pressure vessel to decrease boiloff and pressure rise rate, while the second concept utilized a TVS without an internal heat exchanger. Only the first concept was viable. Its performance was assessed for a seven day mission and found to be satisfactory. It was also concluded that VCS development costs would be greater than for an internal HX installation. Based upon the above comparisons, the HX was recommended as a replacement for the VCS

    Mott transition in two-dimensional frustrated compounds

    Get PDF
    The phase diagrams of isotropic and anisotropic triangular lattices with local Coulomb interactions are evaluated within cluster dynamical mean field theory. As a result of partial geometric frustration in the anisotropic lattice, short range correlations are shown to give rise to reentrant behavior which is absent in the fully frustrated isotropic limit. The qualitative features of the phase diagrams including the critical temperatures are in good agreement with experimental data for the layered organic charge transfer salts kappa-(BEDT-TTF)_2Cu[N(CN)_2]Cl and kappa-(BEDT-TTF)_2Cu_2(CN)_3.Comment: 4 pages, 4 figure

    Dynamical properties of a strongly correlated model for quarter-filled layered organic molecular crystals

    Get PDF
    The dynamical properties of an extended Hubbard model, which is relevant to quarter-filled layered organic molecular crystals, are analyzed. We have computed the dynamical charge correlation function, spectral density, and optical conductivity using Lanczos diagonalization and large-N techniques. As the ratio of the nearest-neighbour Coulomb repulsion, V, to the hopping integral, t, increases there is a transition from a metallic phase to a charge ordered phase. Dynamical properties close to the ordering transition are found to differ from the ones expected in a conventional metal. Large-N calculations display an enhancement of spectral weight at low frequencies as the system is driven closer to the charge ordering transition in agreement with Lanczos calculations. As V is increased the charge correlation function displays a plasmon-like mode which, for wavevectors close to (pi,pi), increases in amplitude and softens as the charge ordering transition is approached. We propose that inelastic X-ray scattering be used to detect this mode. Large-N calculations predict superconductivity with dxy symmetry close to the ordering transition. We find that this is consistent with Lanczos diagonalization calculations, on lattices of 20 sites, which find that the binding energy of two holes becomes negative close to the charge ordering transition.Comment: 22 pages, 16 eps figures; caption of Fig. 5 correcte

    A 5.5-year robotic optical monitoring of Q0957+561: substructure in a non-local cD galaxy

    Full text link
    New light curves of the gravitationally lensed double quasar Q0957+561 in the gr bands during 2008-2010 include densely sampled, sharp intrinsic fluctuations with unprecedentedly high signal-to-noise ratio. These relatively violent flux variations allow us to very accurately measure the g-band and r-band time delays between the two quasar images A and B. Using correlation functions, we obtain that the two time delays are inconsistent with each other at the 2sigma level, with the r-band delay exceeding the 417-day delay in the g band by about 3 days. We also studied the long-term evolution of the delay-corrected flux ratio B/A from our homogeneous two-band monitoring with the Liverpool Robotic Telescope between 2005 and 2010. This ratio B/A slightly increases in periods of violent activity, which seems to be correlated with the flux level in these periods. The presence of the previously reported dense cloud within the cD lensing galaxy, along the line of sight to the A image, could account for the observed time delay and flux ratio anomalies.Comment: 8 pages, 6 figures, 4 tables, to appear in Astronomy and Astrophysic

    Cerámicas eutécticas solidificadas direccionalmente para fotónica y electrocerámica

    Get PDF
    40 páginas, 10 figuras, 3 tablas.[ES] Se describe la microestructura de eutécticos de óxidos y fluoruros que se obtienen mediante diversos procedimientos de solidificación direccional. El artículo revisa las propiedades ópticas y la conductividad de estos materiales haciendo hincapié sobre todo en la influencia que su microestructura tiene en dichas propiedades. La investigación en este campo ha sido realizada fundamentalmente durante los últimos 20 años..[EN] We describe the microstructure of oxide and fluoride eutectics produced by diverse methods of directional solidification. The article reviews the optical properties and ionic conductivity of the materials with special emphasis on the influence of microstructure on those properties. The research in this field has been performed mainly along the last 20 years.Agradezco la financiación del Ministerio de Educación y Ciencia a través de los proyectos MAT2003-01182 y MAT2003-06085-C03-01.Peer reviewe

    Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study. Executive summary

    Get PDF
    Preferred techniques for providing abort pressurization and engine feed system net positive suction pressure (NPSP) for low thrust chemical propulsion systems (LTPS) were determined. A representative LTPS vehicle configuration is presented. Analysis tasks include: propellant heating analysis; pressurant requirements for abort propellant dump; and comparative analysis of pressurization techniques and thermal subcoolers

    Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study

    Get PDF
    Thermal conditioning systems for satisfying engine net positive suction pressure (NPSP) requirements, and propellant expulsion systems for achieving propellant dump during a return-to-launch site (RTLS) abort were studied for LH2/LO2 and LCH4/LO2 upper stage propellant combinations. A state-of-the-art thermal conditioning system employing helium injection beneath the liquid surface shows the lowest weight penalty for LO2 and LCH4. A technology system incorporating a thermal subcooler (heat exchanger) for engine NPSP results in the lowest weight penalty for the LH2 tank. A preliminary design of two state-of-the-art and two new technology systems indicates a weight penalty difference too small to warrant development of a LH2 thermal subcooler. Analysis results showed that the LH2/LO2 propellant expulsion system is optimized for maximum dump line diameters, whereas the LCH4/LO2 system is optimized for minimum dump line diameter (LCH4) and maximum dump line diameter (LO2). The primary uncertainty is the accurate determination of two-phase flow rates through the dump system; experimentation is not recommended because this uncertainty is not considered significant

    Determination of the dynamic gain function of cortical interneurons with distinct electrical types

    Get PDF
    corecore