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The dynamical properties of an extended Hubbard model, which is relevant to quarter-filled layered organic
molecular crystals, are analyzed. We have computed the dynamical charge correlation function, spectral den-
sity, and optical conductivity using Lanczos diagonalization and largechniques. As the ratio of the nearest-
neighbor Coulomb repulsioly, to the hopping integrat, increases there is a transition from a metallic phase
to a charge-ordered phase. Dynamical properties close to the ordering transition are found to differ from the
ones expected in a conventional metal. Lakyealculations display an enhancement of spectral weight at low
frequencies as the system is driven closer to the charge-ordering transition in agreement with Lanczos calcu-
lations. AsV is increased the charge correlation function displays a collective mode which, for wave vectors
close to @r, ), increases in amplitude and softens as the charge-ordering transition is approached. We propose
that inelastic x-ray scattering be used to detect this mode. LNMrgalculations predict superconductivity with
d,, symmetry close to the ordering transition. We find that this is consistent with Lanczos diagonalization
calculations, on lattices of 20 sites, which find that the binding energy of two holes becomes negative close to
the charge-ordering transition.
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[. INTRODUCTION Several anomalous properties have been observed close to
the charge-ordering transition in quarter-filled organic con-
The competition between charge-ordered, metallic, andluctors.(i) Suppression of Drude weight and enhancement
superconducting phases is relevant to a broad range af optical spectra at low frequencies at about
strongly correlated electron materials. For example, in thé&600—1000 cm? in metallic # (Refs. 8,7 B” (Ref. 9 anda
vanadium bronze3-Na, 33V,0s, superconductivity appears salts® at low temperaturesii) The temperature dependence
close to a charge-ordered phase under an applied externafl the resistivity may be different from Fermi-liquid behav-
pressuré. The appearance of a pseudogap in oxygenateibr, in particular, the resistivity can increase as the tempera-
samples of NdgsCe, 15CU,, y has been suggested to be dueture is decreased just before becoming supercondu(dieg
to charge ordering. Quarter-filled layered organic mate- the Table in Ref. § Previously we have explored, using
rials such as the bis-ethylenedithio-tetrathiafulvaléBEDT-  slave bosons, the possibility of superconductfviand the
TTF) family of organic molecular crystalsvith the  and 3" metal-insulator transitidn in the quarter-filled extended
molecular stacking patterns also display a subtle competitiorlubbard model. Here, we concentrate on the dynamical
of metallic, insulating, charge-ordered, and superconductingroperties in the metallic phase close to the charge-ordering
phase$. Supercon-ductivity in organic compounds is usuallytransition. We find that due to the scattering of electrons from
found in close proximity to ordered insulating phadézor  charge fluctuations with+, ) wave vector, dynamical and
example,  «-(BEDT-TTF),CU N(CN),]ClI is an  transport properties display behavior different from that ex-
antiferromag-netic Mott insulator which becomes superconpected in a typical metal. For instance, a strong suppression
ducting under pressure Superconductingd-(ET),l; and  of quasiparticle weight as well as enhancement of spectral
B"-(BEDT-TTF)3Cl,(H,0), are close to charge-ordered weight at low but finite frequencies takes place as the charge-
phased. Superconductivity occurs in the quasi-one- ordering transition is approached from the metallic side. Also
dimensional Bechgaard salt@ietramethyl tetraselena ful- we examine the possibility of superconductivity mediated by
valeng TMTSF,X, when a spin-density wave is suppressed.short-range charge fluctuations close to the transition. We
It is then important to understand the connection of the sufind that superconductivity wittd,, symmetry is possible
perconducting state to the nearby ordered phases and analydese to the charge-ordering transition. We note that the
the effect of the fluctuations associated with the orderingpresent analysis is similar in spirit to those that aim to un-
transition on the normal metallic phase. derstand the effect of spin fluctuations on the metallic phase
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and the possibility of superconductivity mediated by them In the U-infinite limit, the Hamiltonian (1) (t—J—-V
in high-T, compoundsx-(BEDT-TTF),X (Ref. 13, heavy = model withJ=0) can be written in terms of Hubbard opera-
fermionst* and ruthenate¥ tors as

In this paper we study the quarter-filled extended Hubbard
model combining two techniques: lar§gand Lanczos di- B 000 P — oo
agonalization on small clusters which complement each H(X)_@%‘, G XX +<%g VipXio x| _“% X
other. The comparison of a semianalytical approach with ex- ®)
act results leads to a deeper understanding of the numerical ) ) ) .
findings. It also shows which results obtained within theWhereu is the chemical potential. The Hubbard operators in
largeN approach are solid and which are weak. This paper ighis limit satisfy the completeness condition
organized as follows. In Sec. Il, we introduce an extended
Hubbard_ model to describe the electronic properties of X?°+E Xo7=1, (4)
quarter-filled layered molecular crystals. We also review the -
path-integral formalism written in terms of Hubbard opera-
tors and the larg®& expansion introduced to compute elec- s )
tronic properties of the model. In Sec. Ill, we show resultseaCh site Is forbldde.n. e . .
for the dynamical charge correlation function, spectral den- There are two main difficulties in the calculation of physi-

sity, and optical conductivity computed with Lanczos diago-caI tqgantltlﬁs us]lrl% Hamtl)léonlja(‘il): th%;:onéplﬁatfed tct%mt_
nalization comparing them with large-results. In Sec. IV mutation rules ot tne Hubbard operatorand the tact tha

we discuss our results contrasting them with available exghere IS O small parametgr_ In the_ model. A popular ”?ethOd
or handling the former difficulty is to use slave patrticles.

perimental data on the quarter-filled organics. Section V i%:or instance, within the slave boson mettiddhe original
h ibility of havi ivity in th L ' .
devoted to the possibility of having superconductivity in t efermlochO” operator is decoupled 37— b'f .. whereb

model. ) .
andf are usual boson and fermion operators, respectively.
The second difficulty can be dealt with by using a nonper-
Il. DYNAMICAL PROPERTIES IN THE  U-INFINITE turbative techniquéwhich we will use in the present paper
LIMIT: LARGE- N APPROACH based on a larght expansion, wherd is the number of

We consider an extended Hubbard model at one-quarté€ctronic degrees of freedom per site arld I assumed to
filing on a square lattice. This has been argued to be th8€ & Small parameter. At one-quarter fillitghich is the
simplest model needed to understand the electronic propef@in interest in this papgrwe expect the largdt approach
ties of the layered molecular crystals with thend 8" mo- to be a good approximation. This has been shown in the

. . 8
lecular arrangements within each lafléfhe Hamiltonian is  Overdoped regime of higff cuprates. _ _
Hamiltonian (1) has been treated via larde¢ in a slave

boson representation in Ref. 17 /=0, and in the context
H=—t > (clciptcl,cip) +UX nin;, of quarter-filled layered organic superconductovs#Q) in
(i).o i Ref. 4. Here, we concentrate on the dynamical properties of
Hamiltonian (1), using the recently developed larde-
+VE ninj—,uz Nig, (1) expansion? This method is based on a path-integral repre-
(i o sentation of the HubbarX operators which is written in

where U and V are the on-site and the nearest-neighbors}erms of Grassmann and usual bosonic variables associated

Coulomb repulsion. respectivel anﬁf creates an electron with fermilike and bosonlike operators, respectively. In do-
X pulsion, respectively, - ing this, additional constraints are needed to make these field
of spin ¢ at sitei. In the limit U>V>t the ground state is

) . . variables behave as Hubbard operatsetisfying their asso-
insulating with a checkerboard charge-ordered paftdétar ciated algebra as they should.pAIthoughf{hisg may seem a
U—o andV=0, the system is expected to be metallic as it

. filled. Evaluati t the Drud ot by L great complication in the theory, in fact it avoids introducing
Is quarter filled. Evaluation of the Drude weight by _anczosany decoupling scheme of the original Hubbard operators, as
techniques suggests that a metal-insulator transition tak

o - R slave boson representations. For completeness we will
place 1at a finite value oW;~2.2 for a sufficiently large summarize the framework used in the diagrammatic expan-
value® of U.: 10 sion developed in Ref. 19.

We now introduce the Hubbard operators Our starting point is the partition functichwritten in the
Euclidean form:

which is equivalent to imposing that “double occupancy” at

(o8 T —) (oa o U'O'I
XP7=(1-cci)ciy, XP=(XP)T, X77 =c],Cipr.

)

qOX_()(r’

Z:JDX-“B& xge - 1
i [ 00

i

X0+ > x;’”—l}a
The five HubbardX; operatorsx”®  and X°° are boson- Y

like and the four Hubbar& operatorsx?® and X"’ are fer- % 112 4_f : )
mionlike. The names fermionlike and bosonlike come from (sdeMag)i "ex drLe(X.X) ). ©
the fact that Hubbard operators do not verify the usual fer- )

mionic and bosonic commutation relatioffs. The Euclidean Lagrangialg(X,X) in Eqg. (5) is
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o (XO7X 70 4 (7007 condition is enforced by exponentiati.n.g:jxioofpripp
Le(X,X)= > E 5 +H(X). (6) =N/2, theN-extended completeness condition, with the help
ho X of Lagrangian multipliers.; . From this completeness condi-

tion we can see that the charge operat8? is O(1) in the
X " : ; 1/N-expansion, while the operat is O(1N). As a con-
resentation of the partition functigs) looks different to that 0§equence of this, the largéapproach presented here weak-

usually found in other solid-state problems. The measure . o .
; : . . ens the effective spin interaction compared to the one asso-
the integral contains additional constraints as well as a su:. ; .
. 12 o ciated with the charge degrees of freedom. For instance,
perdeterminant (sdet,g);"“. Also the kinetic term of the

L ian(6) i I ial. The determinant read through O(1IN) we find collective excitations in the charge
agrangian(6) is nonpolynomial. The determinant reads correlation function but not in the spin susceptibility.

1 We write the boson fields in terms of static mean-field
(sdeM pg)P=1/——, (7)  values €o,\o) and dynamic fluctuations
(_ XOO)Z

and is formed by all the constraints of the theory. Note that
(sdeM »5)2 is not proportional to ¢ X%)2, because the
theory is constrained in a supersymmetric sense where boson
and fermion determinants must be treated in different way@nd, finally, we make the following change of variables:
(see Ref. 19 for more details about the path-integral formal-
ism for Hubbard operatoysThe constraints appearing in the

It is worth noting at this point that the path-integral rep-

XP=Nro(1+ 6R;),

)\i:)\0+ 5>\i, (8)

theory are necessary in order to recover the correct algebra of fﬁpz XPO ,
the original Hubbard operators. In EG.0) we show how to \/N_ro
treat this determinant through the use of a lakgexpansion.
We now discuss the main steps needed to introduce a 1 op
largeN expansion of the partition functiofb). First, we in- fip= \/Wxi , 9
[0}

tegrate over the boson variabl¥$" using the second

function in Eq.(5). We extend the spin index= = to a new Wherefi+p andf;, are Grassmann variables.

indexp running from 1 toN. In order to get a finite theory in Introducing the above change of variab[é&gs. (8) and
the N—co limit, we rescale the hopping; to t;; /N andV;; (9)] into Eq. (6), and after expanding the denominator ap-
to Vj; /N. In doing so, note that; /N (rather thart;;) should  pearing in Eq.(6), we arrive at the following effective La-
be fitted to band-structure calculations. The completenesgrangian:

1 . .
Leff=—§i2p(fipfi;+fi;fip)(1—5Ri+5Ri2)+ij2p tijrofi;fjp+i2j Vir26R 6R;— .Ep fir fip(1— OR;+ 6R?)

+Nrg X O\ SR+, fifip(1— R+ 0R?) oN— > Zh(1-0R+ 6R%) 2, (10)
,p p

where A\, has been absorbed in the chemical potential deal with these interaction terms we introduce a set of Feyn-
— u—\g and all constant and linear terms in the fields haveman rules in powers of N. 19 These will help us to deter-
been dropped. The path-integral representation ofnine, for instance, that the terms retained in the effective
(sdeM xg) Y2, written in terms of theN-component boson Lagrangian(10) correspond to expanding through C{}/in
ghost fields® Zp, leads to the last term of Lagrangigt0).  the largeN expansion. The Feynman rules needed to carry
Note that all the complications arising from the Hubbardout this project can be summarized as follows.

algebra have been translated to an effective theory of fermi- (i) Propagators We associate with the two component
ons interacting with bosons. Indeed, the interaction term&X"=(JR,é\) boson field, the bare propagatdp,

appearing in the effective Lagrangidd0) are generated 4Vr§[cos{qx)+cos(qy)] o

solely by the Hubbard algebr@part from the no double- D(_O%ab(q’vn):N ,
occupancy constraintand are not present in the original o 0
Hamiltonian (3), which is quadratic in the Hubbard opera- 1D
tors. which is represented by a dashed line in Fig. 1 connecting

In the above expansion we have only retained the firstwo generic componeni andb. q and »,, are the momen-
nontrivial terms that couple the fermionic and bosonictum and the Matsubara frequency of the boson fields, respec-
modes. In order to have a systematic scheme to classify artively.

245121-3



MERINO, GRECO, MCKENZIE, AND CALANDRA PHYSICAL REVIEW B68, 245121 (2003

representing the interaction between two ghosts and one bo-
son[Fig. 1(c)]; and

ab -1 0
Fpp':(_l) 0 0 5pp’ (17)

FIG. 1. Feynman diagrams in the larjeexpansion of the Hub-  yaprasenting the interaction between two bosons and two

bard operator theory. Solid lines represent fermions which are rex hosts[Fig. 1(d)]. Each vertex conserves momentum and
lated to the electrons. Dashed lines represent bosons which are ri hergy, as .it ShOLJld

lated to charge fluctuations. Dotted lines represent ghosts which are In the lowest order of the expansidh=oc, we have the

not physical but related to the constraints appearing in the theor riginal fermions renormalized by the interactios —
which enforce that fermions satisfy the Hubbard operator algebra: ginal termions renormalize y the eractios)=

(8—(d) The types of vertex which occur up to order Q{}/ (a) _2”0[FOSQ<><)+COS(<V),]' Fora given value Qi" ro must be
The vertex between two fermions and one bos@).The vertex determ'n_ed self—consstt_ently. For Instan[:@;s_ gqual todl2
between two fermions and two bosofs). The vertex between two  (Whered is the hole doping away from half fillingrom Eq.
ghosts and one bosofd) The vertex between two bosons and two (8) and the completeness conditio#).
ghosts.(e) The sum of all one-loop diagrams contributing to the ~ The path integra(5) is written in terms of the originaK
irreducible boson self-energy which is of the order of O/ operators without having to introduce slave particles. Equa-
tion (5) is analogous to the path integral used for the Heisen-
The bare propagator of tHé-component fermion field, ~ berg model where, using &) coherent states, the measure
reads can be writteA' in terms of the spirﬁ. There is, however, an
extra price we have to pay if we work with the original
Hubbard operators. For instance, we need to introduce a new
constraint{the secondS function in Eg.(5)] and the deter-
o S ) minant (sde¥l,g) of the matrix formed by the constraints
WhICh_IS represented by a solid line in Fig. 1. conngctlng tWOappearing in the theory. In spite of these “apparent” com-
generic components andp’. The electron dispersion rela- pjications our formulation is very flexible in calculating the
tion appearing in Eq(12) is the one associated with the physical quantities of interest, as it will be shown below.
original fermions renormalized by the interaction,= In summary, we have developed a diagrammatic tech-
—2tr[cosky)+cosk,)], with t the hopping between pjgque appropriate for a large-expansion along the lines of
nearest-neighbors sites on the square lattice. The quahtitieshe largeN expansion developed in quantum field theory.

Oppr

S o) = o

quencies of the fermion field, respectively. . can determine the order of the diagram contribution.
We associate with th&l-component bare ghost fieldp To conclude this section we make contact with closely
the propagator related approaches such as slave boson formulations. In con-
trast to slave boson theorigs) Greens functions are calcu-
Dppr==6ppr (13 Jated in terms of the original Hubbard operatdts,fermions

fip appearing in the theory are proportional to the Fermi-like
operatorX°®P [see Eq.(8)] to all orders in the M expan-
gsion, not only to leading ordéf, (c) as our path integral is
written in terms ofX operators we do not need to introduce
priori any decoupling scheme, aitd) r, is the mean value
, i , of X% which is a real field associated with the number of
APP = — §(w+ o)+ p; 1|56°P (14  holes[see Eq.(8)] and not with the number of holons. At
leading ordefN—c or O(1)] andV=0, our formalism is
representing the interaction between two fermions and onequivalent to slave boson approaches. However, at the next
boson[see Fig. 1a)]; to leading ordef O(1MN)] [which is necessary to calculate
one-electron properties such as the electron self-energy
i 1 2 (k,w) and the electron spectral functidr(k, )], the two
- §(w+ o) — 2 formulations do not coincide. The differences between the

!

APP =~ SPP (15)  two formulations are not yet completely established. Our
_ } 0 theory has thesignificant advantagéhat it does not require
2 the introduction of gauge fields like in slave boson ap-
) ) ) ] proaches. Hence, through order Q{}1/we do not need to
representing the interaction between two fermions and tW@,ue care of gauge fluctuations or Bose condensdtiote
bosongsee Fig. 1b)]; that Eq.(8) does not mean Bose condensaliofhis is im-
portant because for the doped Hubbard model the gauge fluc-

sz':(_l)wpp" 0) (16 tuations are known to significantly change the physics.

which is represented by a dotted line in Fig. 1 connectin
two generic componengzandp’.

(i) Vertices The expressions of the different three-leg an
four-leg vertices are
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Careful numerical work will determine the improvements of N 1
the present approach with respect to slave boson formuldrr(d,vn)== " 7 2 ne(eg—p)(ex+q— €k
tions. sT ok
5 [Ne(ekrq— ) —Ne(ex—u)]
+(ekiqTex) — — ,
Ill. DYNAMICAL PROPERTIES OF THE METALLIC T Ekq™ 8k
PHASE CLOSE TO THE CHARGE-ORDERING (20)
TRANSITION
N 1
In this section, we analyze using larbeand Lanczos HAR(q-Vn):_N_E ; (ek+qtew)
S

techniques the influence of the charge-ordering transition on
the dynamical properties of the normal metallic phase.

X[nF(8k+q_M)_nF(8k_M)]

. (2D
— vt eyiq— &k
A. Charge response and,
The dynamical electronic density-density response func-
tion can be written in terms of Hubbard operators. We define ;o ) N D [Ne(eksq— m) —Ne(ex—p)]
the retarded density-density, Green’s function as G ¥n Ng % —ivgtegiq ek '
(22)

~ 1 op A whereNjs is the number of sites of the system.
Di(n=y % (TXP(7)X]H(0)). (18) From Dyson’s equation anH ,,, the dressed components
of the boson propagatoR ., can be found:

From= (X9=N/2— X% and Eq.(8) we find, after Fourier (Dap) *=(D(gjap) '~ ap- (23
transforming, D, May contain collective excitations such as zero sdind.
In order to look at charge-ordering instabilities induced by
512 the intersite Coulomb interactiolv, we have calculated the
D(q,v,)= _N(§> Drr(0,7vy). (19 static charge susceptibiliti (q, »,=0) for differentq vec-
tors on the Brillouin zongBZ). At one-quarter filling ¢
=0.5) the corresponding chemical potentialis- —0.36Q
Here Drg(q,v,) is the (R,R) component of the boson in the limit N—o. We find that the static susceptibilit_y di-
propagator. This is the only physical component of the bosoN€Tg€s at the wave vectog=(w,m) for V=V,.~0.63 sig-
propagator and encodes the charge fluctuations occurring ffing the instability to a checkerboard charge-density wave.
the system. Other components of the boson propagator sudi'® value ofV. is slightly smaller than the one previously
as (\,R) or (\,\) contain the nonphysical field which are ~ found using slave bosors/;~0.6. This is because of the
introduced to enforce the no double-occupancy constrainf€coupling of the electron operators introduced within slave
Unlike in slave boson theories, th&R) component used bosons to treat the intersite interaction tevim;n; Whlch is
here is associated directly with the charge and not with 40t needed(due to the use of Hubbard operatoia the
fictitious bosonic fieldholon). present IargeN approa_ch. For comparison, recent exact di-
Through O(1N) the boson propagator consists of the bareagona!lzatlon calculgpoﬁ% give a critical value for the
boson propagatob o, [which is of the order of O(M)] metal-insulator transition dnvep by at aboutV.~2t for
renormalized by a random-phase-approximatigPA)-type U =20. The large difference iV between larg&N and
series of electronic bubbles. The irreducible boson selfLanczos diagonalization calculations can be attributed to the
energy componentd],,, are obtainedthrough order M) strong renorma!ization of the bare bafgiven byry,= 5/2)_
from the summation of all the contributions corresponding toWhich appears in largs- approaches at @). Our compari-
the one-loop diagrams shown in Figel son to Lanczos_wnl show that in splte of the d.|ﬁerence in the
The last two diagrams appearing in Figellinvolving  absolute magnitude o¥., dynamical properties computed
ghost fields are very important. It is possible to show thafTom the 1N expansion are in rather good agreemenvas
these two diagrams exactly cancel the infinities, due to the~Vc, making the IN approach reliable.
frequency dependence of our vertices, of the two first dia- In Fig. 2 we show the evolution of ImD(q.,») as the
grams appearing in Fig.(d). Ghost fields interact only with system is driven close to the charge-ordering instability,
the boson fields as can be seen from Figs) &nd Xd). <V., for the wave vectorg.= (7, 7). The intersite Cou-
Summarizing, the only role of ghost fields, through orderlomb repulsion softens the collective modegatwhich ap-
1/N, is to cancel infinities in the boson self-eneidyy, aris-  pears forU—« andV=0 and, at the same time, increases
ing from the frequency dependence of our vertite$ and its weight. At wave vectors far from, the collective mode

(15). shows up as a peak located at frequencies of abuadtich
Using our Feynman rules, we can now write out explicitly carries small weight and is barely influenced\byThe mode
each of the components of the boson self-endigy, at (7, ) can be detected, in principle, with electron energy-
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00 02 04 06 08 1.0 !

/‘\ |V—
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FIG. 3. (a) Contributions to the electron self-energy(k, »),
through O(1N), in the Hubbard operator theory. The first diagram
contains two three-leg vertices as the ones shown in Faj.ahd
the second one is formed with one four-leg vertex as shown in Fig.
. i 1(b). (b) Contribution to the effective interaction between quasipar-
FIG. 2. The softening of the collective mode at the wave Vecmrticles,veff, through O(1W). This interaction is used in the present

qc=(m,m) as the system is driven closer to the checkerboard, . 1, analyze superconducting instabilities of the Fermi liquid
charge-ordering transition. The frequency dependence of the Chargﬁduced by the charge fluctuations appearing close to a checker-
correlation function is shown for several different values\st. board charge-ordering transition induced\ay

The right and left panels show results obtained using Lanczos di-

agonalization orl. =16 site clusters¢ =20t) and largeN theory, The imaginary part of the charge correlation close to the

respectl_vely. A Lorentzian broadening af=0.1t is used in the charge-ordering wave vectop— ., can be fitted to the fol-
calculations. Only for wave vectors close to or at {r), the soft- . 26
I8W|ng RPA form:

ening of the collective mode is observed as a consequence of th

proximity of the system to a checkerboard charge-ordering transi-

tion. Calcul_ations of dynamical properties using laijgheory at —Im 5(01,11)=A v ' (25)

O(1N), which couples the electrons to the short-range charge fluc- v+ wé

tuations associated with this transition, and Lanczos diagonaliza-

tion, suggest that this collective mode is responsible for the “un-Where wq= wq+ C(g—q)? whereA and C are constants.

conventional” behavior of dynamical properties. The insetwg gives the position of the peak appearing in the charge

compares the position of the peak associated with the collectiveorrelation function at 4,#) for different V's and goes to

mode at ¢r,7r) computed from Lanczos and largeapproaches.  zero asv— V., measuring the proximity of the system to the
charge-ordering transitiofsee inset of Fig. 2 We note that

loss scattering (EELS) (Ref. 24 or inelastic x-ray the overall behavior of the charge susceptibility is analogous

scattering®® With EELS one is able to obtain information on to the one of the spin susceptibility in nearly antiferromag-

the electronic properties of the system at a given energy andetic metals. %

wave vector, so that, for instance, the dispersion relation of

the mode can be mapped out. A more appropriate way of B. Spectral densities

detecting this mode is by using inelastic x-ray scattering, , .

which provides a direct probe of the dynamical charge cor- 1h€ Green's function Eq.(12) corresponds to the

relation function and has been successfully applied to ong-infinite propagator which is just proportional to the Hub-
and two-dimensional Mott-Hubbard systeffis. bard operatorsX”’ [see Eq.12)]. In spite of involving the

In order to compare with largh-we compute, with Lanc- Many-body Hubbard operators Eq2) looks similar to the

20s diagonalization, the spectral decomposition of the charggfopagator for free electrons although its physical interpreta-
correlation function tion is very different. Equatioril2) describes quasiparticles

with renormalized hopping(k) /2. TheN=« propagator in
Eqg. (12) does not contain dynamical corrections; these ap-
C(q,v)=2, [(M[Ng0)28[v—(Em—Eo)], (24  pear at higher orders in theNl/expansion. In order to cal-

m culate spectral densities, we first calculate the self-energy.
whereNy=1LS,e%i(c; c;—(c; ¢;)). E; and E, denote Using the Feynman rules, there are two diagrams, shown in
the excited- and ground-state energies of the system, respecid- 3@, contributing to the self-energy through O/
tively. L is the number of sites in the cluster. Note that T"€ analytical expression for these two diagrams reads

C(q,v) can be compared te-ImD(q.,») as they have ) .
equivalent definitions. Of course, attention must be paid to ~ S,,= > ARP'DapGp AR P+ 2 AREDL,, (26)
the fact that we are comparing calculations of the charge p’.p".ab ab

susceptibility on an infinite system with calculations on anyhere integration over internal momenta and sum over Mat-
L =16 cluster. Indeed, we find theX{(q,») is in rather good  supara frequencies is assumed. The renormalized boson
agreement with—-ImD(q.,v) (see Fig. 2, both displaying propagator in Eq(23) plays a similar role as the phonon
similar softening and increase in amplitude of the collectivepropagator when dealing with the electron-phonon interac-
mode at ¢r,7) close to the charge-ordering transition. tion in simple metals. Therefore, in the calculation of

0.0 ) 2.0 4.0
vit
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0.0 of the self-energy, R®, which is also plotted in Fig. 4. It is
worth noting that fold=« andV=0 the self-energy is al-
= _10l ready nonzero as a consequence of the interaction of fermi-
3 / ons with the collective mode present in the charge correla-
¢ 7 — % tion function.
= 20 ’ —-— v=02t || From Im3(k,w) and Re(k,»), we can compute the
R spectral functiom(k,w) = — (1/7)Im G(k,w) as
20 ‘ |
1 Im2(k,w)
‘0 AKk,w)=—— 5 >
: T (w+pu—e—ReX(k,w))*+Im3(k,w)

(28)

ReZ(w)/t

The spectral density(k, ) calculated and plotted in Fig.
5 is associated with th&operators. As these anticommute,
20 P L ‘ A(k,w) integrates to 1. For the physical Hubbard operators
o0 74078020 10 L 10 20 30 40 00 as defined from the change of variables expressed in Eq. 9,
the total spectral weight would sum %6/2, which is the
FIG. 4. Evolution of the real and imaginary parts of the self- correct sum rule in th&l— o limit. Deviations appear abl
energy of an electron at the Fermi surface as the system is drivelg made finite. For instance, fo=2 the total spectral
close to the checkerboard charge-ordering transition from Iarge- weight of the Hubbard operators would giveinstead of
theory. The amplitude of the self-energy is enhanced at frequencies 8)/2, so that 66.66% of the full sum rule would be cap-
betweent and 3 due to the enhancement of fluctuations associatezzlred at one-quarter filling. Similar deviations in the sum rule
with (7r,7r) short-range charge ordering. The behavior of the self—a e found in related slave boson approa&%in;the N—s oo
energy leads to an enhancement of spectral weight in the spectr”rnit In the present approach we have expanded the self-
density(see Fig. % and an incoherent band in the density of states ' ; .
(DOS) (see Fig. Bbetweenw=t and 3 as we approach the charge- energy to O(IN) and _computed Green'’s function of tlie
ordering transition. The intersection of the curve of Rw) vs o operators. An alternative route WOU'C,’ have been to expand
with o+ u— e(k) determines the quasiparticle peaks in the elec-directly the propagators to O(4J. In this way one could see
tronic spectral function. how th_e O(1N) fluctuations restore part c_Jf the sum rule.
In Fig. 5 we show the spectral function obtained from

i _ largeN theory, for an electron ak=(0,0),(1.204,1.204),
> (k,) through O(IN) not only band-structure effects en (7r,7r) for different values oV — V... The spectral density of

ter, but also collec'qve effects assouateq W't.h the charge deén electron at the Fermi surface displays a quasiparticle peak
grees of freedonthis self-energy calculation is analogous to characteristic of a Fermi liquid aé= . The rest of spectral

the largeN expansion within slave boson formulatiéfs weight that is left is incoherent.

Using the spectral representation for the boson fields, The quasiparticle weighZ, evaluated at the Fermi sur-
D, the imaginary part of the self-energy Bncan be ob- face is defined as

tained,
JRe3 (k,w)| 7t
1 1 Z=l1-—— (29
M (ko)== 2 | 7IM[Dre(d.0~ sxq)] Je =0
s q
X (2 gt 2u+ ©)2+ 1M [Dpy (00— & _g)] In the inset of Fig. 5 we observe how a gradual suppres-

sion of Z, occurs as the charge-ordering transition is ap-
proached. This can be compared to the suppression of the
Drude weight found in Lanczos calculatioHsyhich is also
evident in the spectral function plotted in Figs. 6 and 7.
X(Ng(w—ex—q) + N[ —&x—g)]. (27)  spectral weight is transferred from the quasiparticle peak to
the range of energies betweeand 3, asV tends toV. due
Note that this self-energy is the one associated with theo the scattering of the electrons off the charge fluctuations
propagatoiG(k,w) of the f operators. associated with short-range checkerboard charge ordering.
Figure 4 shows the behavior of l(k,w) with increas- The modes close tor, ) give the strongest contribution to
ing V for a wave vector on the Fermi surfac&k  the scattering. The apparent peak arowrd— 2t should not
=(1.204,1.204)Ywe have usedy=0.1t in the analytical con- be interpreted as a quasiparticle peak but as the lower Hub-
tinuation. As we approacl/=V,, both the imaginary and bard ban& associated with the on-site Coulomb repulsion
real parts of the self-energwhich from Eq.(27) involvesa  U.
sum over the full BZ are enhanced in the positive range of  The behavior of the spectral density shown in Fig. 5 can
frequencies—3t due to the scattering of the electrons off the be now understood from the evolution of the real part of the
checkerboard charge fluctuations. Performing a Kramersself-energy shown in Fig. 4. The scattering of electrons from
Kronig transformation on Inx, we can obtain the real part the strong charge fluctuations atr(7) wave vectors in-

X(ex—gt2u+tw)+Im[D),(q,0—ger_g)]
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05 - ] ToV=0.4t 0 ‘ M . A AW
—-— V=0.6t ~5.0 0.0 5.0 -5.0 0.0 5.0
v, — V=063t (-t (o—p)t

3—0.5 vit FIG. 6. Evolution of quasiparticle spectral density of states,
z A(k,w), atk=(0,0) and (0s/2), computed from Lanczos diago-
nalization on anL=16 cluster for an extended Hubbard model at
quarter filling. The on-site Coulomb repulsion is taken to We
=20t and a broadening of thé peaks,7=0.1, is used. As the
Y system approaches the metal-insulator transition, an enhancement
0.0, =5 =00 (?)j? 1020 30 3.0 of spectral weight at finite frequencies and a suppression of the

weight at the Fermi energy takes place.k&t (0,0), the two sharp
peaks are associated with the lower Hubbard band and the quasi-
2.0 — T particle peak. An overall qualitative agreement with the results from
largeN theory is found(see Fig. 5.

— V=0
151 |ZZV0ah ] -
- therefore the effect of the fluctuations negron the elec-
3 trons is weaker than spin fluctuations in systems close to half
E1.0! filling.
:(F!, In order to test the validity of the largé-approach we

have also computed the spectral densities from Lanczos di-
agonalization of finite clusters,

0.0, A(”(k,w):§ [(m,Ne+1|c,|ON)|?

-2,

FIG. 5. Evolution of quasiparticle spectral density of states as- XSl [En(Net 1) =Eo(Ne) I (30
sociated with thef-operator propagator computed from lamge- for adding and electron to the system with electrons and
theory at different wave vectork=(0,0), (kg,kg), and (7, ).
Close to the charge-ordering transition spectral weight is transferred
from the quasiparticle peak to low and intermediate frequencies.
The quasiparticle weight at the Fermi energy,, is rapidly sup-
pressedsee insetas the charge-ordering transition is approached, XHw+[En(Ne—1)—Eo(Ne)]} (3D
V—V,. The results presented here can be compared A(i)w)
computed from Lanczos calculations shown in Figs. 6 and 7.

A (K, w) =2, [(m,Ne—1|cy,|ONe)|?
m

for removing an electron from thBl, electron systemk,,
andE, denote the excited- and ground-state energies of the
volves large frequencies. This leads to an enhancement of tigystem anctl‘rz l/\[EjE' I‘RJ'CJ-T(,.

real part of the self-energy at large frequencies which, in In Figs. 6 and 7 we plot the evolution of the spectral
turn, produces an increase of spectral weight at large andensities calculated with Lanczos techniques for wave vec-
intermediate energies. This behavior is analogous to the orters atk=(0,0),(w/2,0),(w/2,7/2), and @r,) for different
found in metals in the presence of short-range spinvalues ofV/t. At k=(0,0) two sharp peaks are clearly dis-
fluctuations®® Unlike in the case of nearly antiferromagnetic tinguished already fov=0. One of them is the quasiparticle
metals, no new poles induced by the interaction arise. This ipeak and we associate the lower one with the lower Hubbard
because at quarter filling no two points of the Fermi surfacéband due to the presence df For the nearest wave vectors
are connected by the scattering wave vegtet (7, 7), and  to the Fermi energyk=(#/2,0) and @r/2,7/2), we find an
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0.8 . 0.50 . . ' 15 '
k=(m/2,m/2) k=(r,m) 040 | V=0 4
.06 V=0 1F V=0 B - 1 1 Al V=0
8 3 030 | . —-— V=04t
3 = ---- V=06t

X 041 1r . 020 | ] — V=0.634
<ol 10 ] 0.10 | .

f\,\ 10}
0.0 ' . LA

| V=0.5t

k= I k=(m,m) I~ I
08T v=(t1c 22) rov=t ] % 0.20 ;
S o6 1r ] 010 + -
F04r 1r 1 s \
<., ] fop === os|
0:0 1 M/\,_L —_ 0.30 Vet
05 ; 2 o020
i k=(m2,m2) 11 ke(nm) ] 4 A
= 04 v=1.8t V=18t 010 - A
803 1t : 0.00 ML o e e
X 7100 -50 00 50 0
X 90 1 ] . . X y 40
i I, -
01t /\/\ 1t 1
%% A 00 5.0 A 50 A 00 Asfo FIG. 8. Evolution of the DOS as the charge-ordering transition
(o)t (o—uy/t is approached from the metallic phase. The left and right panels

show results from exact diagonalization on a 16-site lattice with
FIG. 7. Evolution of quasiparticle spectral density of states,U—c and largeN approaches, respectiveliThe critical value of
A(k,w), atk=(w/2,7/2) and (r,7), computed from Lanczos di- V is V.~2t and 0.65, respectively. A Lorentzian broadening of
agonalization on arb =16 site cluster for an extended Hubbard 7=0.1t has been introduced in the exact diagonalization calcula-
model at quarter filling. The on-site Coulomb repulsion is taken totions, to aid comparison with the largéresults. As the intersite
be U=20t and a Lorentzian broadening of the delta peaks, Coulomb repulsiorV is increased, the density of states close to the
=0.1, is used. Fermi energy is gradually suppressed indicating the proximity to the
charge-ordering transition. At the same time spectral weight is en-
enhancement of incoherent spectral weight at finite frequerhanced for frequencies in the rarigest in the largeN calculations.

cies as the charge-ordering transition is approached. The peak at—2t is an incoherent band associated with the lower
Finally, the total density of statéd®0S) can be computed Hubbard band. An overall qualitative agreement between Lanczos
from and largeN calculations is found.
2 ; 2
1 me® & [(n]jx[0)]
=_ (=) (+) g(w)=Dé(w)+ — ———S(w—E +E,),
N(w)={ 2 [AO K o) +A ko)l (32 (@)=Dé(w)+ 7= 2 =~ —dw—ErtEo)
(33

~ InFig. 8 we compare the evolution of the DO¥(w), for  wherej, is the current in the direction,E, the ground-state
increasingV/t, calculated with both Lanczos &t—c and  energy andE,, the excited-state energies of the systens

largeN calculations. the electron charge, and the Drude weight is denote® by
From Lanczos calculations we obserleft panel of Fig. The following sum rulé? is satisfied byor(w):

8) for V=0 a band at about 3t, a quasiparticle band situ-

ated atw=u, and a band running frorhto 5t. As V/t is * B me?

increased the weight of the quasiparticle peak is reduced and fo o(w)dw= _I<O|T|O>' (34)

weight between R and 3 is gradually enhanced. Also a ] o o i
suppression of spectral weight at low frequencies occurs as\hereT is the kinetic-energy operator, which is the first term
precusor effect before the charge-ordering transition taked the Hamiltonian(1). o _ _
place. This general behavior is in qualitative agreement with The optical conductivity is plotted in Fig. 9, for increasing
largeN calculations. Indeed, an incoherent band at negativé/@lues of the ratia//t and fixedU =20t. At V=0 we find a
frequencies of about 2t, associated with the lower Hub- Drude peak and a broad mid-infrared band centered at about
bard band, a suppression of states close to the Fermi energdl- AS V/t is increased the mid-infrared band is enhanced
curs (see right panel of Fig.)8 However, we note that the mid-infrared band, at frequencies of_ about 2lso an inco-
pseudogap appearing within lardkis less pronounced than herent band present at larger energies of the ordér @fot

in Lanczos calculations. This can be attributed to finite-sizeshown for clarity is gradually suppressed and its associated

From the behavior of spectral densities and DOS shown in
Figs. 5—-8, we attribute the enhancement of optical weight
observed in the mid-infrared range to an increase in the in-
It is interesting to analyze the behavior of the optical con-coherent excitations carried by each quasiparticle as a result
ductivity as the system is driven through the charge-orderingf charge fluctuations associated with short-range checker-
transition. Using Lanczos diagonalization we have computedoard charge ordering. From the behavior of the spectral

C. Optical conductivity
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FIG. 10. Temperature dependence of the scattering rat@ )L/
=-2Im3(kg,0=0). This scattering, which is due to charge fluc-

FIG. 9. Evolution of the optical conductivity computed from ; ‘ X o
Lanczos diagonalization as the system is driven through the metaftations, increases as the charge-ordering transition is approached.

insulator transition. The calculation is performed onlan16 site As the tempere;ture increases abpve abaitﬁEO.ZZ, .1/T(T)
cluster,U=20t, and differentV, with a Lorentzian broadening of changes from g° dependence t(_) a linear behaviorlinThis tem-
n=0.4t. Enhancement of optical weight at low frequencies is foundPerature scale depend§ only sllghFIy W S0 tha.t largeN theory
asV is increased. The broad band situated at abaut(fdr large [through O(_1N)] pre_d_lcts Fermi-liquid behavior close to the
V/t) is due to incoherent transitions between different sites induce§narge-ordering transition at temperatures betow

by the intersite Coulomb repulsion. We interpret the low-energy, . .
feature appearing at about 2s a consequence of transitions be- behavior. The temperature scale defined By decreases

tween the incoherent band and the quasiparticle peak found in th%nly slightly as we approach the charge-ordering transition

spectral densitied\(k, ) for wave vectors on the Fermi surface. remaining ﬁnite_ as/—V; (thrOUQh O(1IN). This is in Con,' i
trast to dynamical mean-field approaches where a similar

. o _ low-temperature scale is suppressed as the Mott-Hubbard
densitiesA(k, ) shown in Figs. 6 and 7 and assuming that ayatg) insulator(driven by U instead ofV) is approached’
lowest-order diagram(neglecting vertex correctionsis  ence, Fermi-liquid behavior is found below this tempera-
enough to compute the optical conductivity we would at-y;re scale even close to the charge-ordering transition occur-
tribute the low-energy feature to transitions between the INfing at V~V.. Presumably, higher-order corrections in the

golherentkband ca(;ried rl])y I3ach _quasipart_ircr:_e and the ?ut_asip_alrm expansion may suppress the region where the system
ticle peak situated at the Fermi energy. This interpretation i TN
plausible if one notes that the low-energy feature observed iReCrLZVﬁ]suansd:rsf:rrg.ihgthg Iii:: Eét![:eur.ture work should
Fig. 9 moves together with the broadband \é& is in- We have also computed the temperature dependence of
creased. Similar results would be obtained from Iage- ha effective mass defined as*/m=1/Z,(T), evaluated at
theory evaluating the bubble Feynman diagram for the optizo Fermi surface, and is shown in Fig. 11. LaNyeheory
cal conductivity, as the spectral densities obtained are Sim”aﬁredicts an increase of*/m as the temperature is raised for
to the ones obtained from Lanczos diagonalization. V—V,. This means that the system becomes more incoher-
ent as the temperature is increased. Interestingly this behav-
IV. CONNECTION TO EXPERIMENTAL RESULTS io_r is al_so found in the Hubbard model _in the limit of in_finite
dimensions close to the Mott metal-insulator transition.
Recent experiments with Raman scattetingnd optical However in that case the system is close to a metal-insulator
conductivity measuremerifs on the insulating salt transition which takes place between two nonordered phases,
0-(BDT-TTP),Cu(NCS), find that the checkerboard charge- in contrast to the charge-ordering transition discussed here.
ordered state discussed in this paper is indeed the grounst V=0 the effective mass is temperature independent as
state. This gives experimental support to the model discussezhe would expect from a weakly interacting system. At the
here. A discussion of other possible orderings within mordowest temperatures we obtain enhanced effective masses in
complicated models can be found in the work by 8emd  the range 1.3—2 fov/t varying from 0 to 0.63.
Clay, Mazumdar, and Campbéfi. In Fig. 12 we show optical conductivity data of
We review now the experiments on resistivity measure-9-(BEDT-TTF),CsCo(SCN) along thea directior?® at T
ments on several quarter-filled organics, and make contact 15 K. This salt is metallic down to temperatures of about
with the predictions of the largl-approach presented. 10 K. At this temperature a charge-ordering transition to an
From the imaginary part of the self-enertyq. (27)] we  insulating phase takes place. The observed optical conduc-
can obtain the behavior of the inverse of the lifetime of thetivity displays a band situated at 1.2 eV, a mid-infrared band
quasiparticles, I(T)=—2Im % (kg,0) with temperature as appearing at frequencies of about 0.25 eV, and a feature ap-
shown in Fig. 10. From this plot we obtain a temperaturepearing at low frequencies of about 0.13 eV. In the same
scale, T*~0.22, at which 1#(T) changes fromT? to T  figure we present a comparison of our exact diagonalization
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FIG. 11. Temperature dependence of the effective mass of an FIG. 13. Behavior of the effective potential between quasiparti-
electron on the Fermi surface*/m=1/Z,(T), as obtained from cles, V¢¢(dy,q,), as a function of momenta for increasingt
largeN theory through O(I). As the system is driven closer to values along thej,=q,=q direction. AsV/t—(V/t)., the effec-
the charge-ordering transition a stronger increase of the effectivéve potential becomes negative at the, ) points, becoming sin-
mass withT is found. gular at the transition to the checkerboard charge-ordered insulator.

It is the momentum dependence of the potential shown here which
calculations of the optical conductivity performed on a 16-leads to_thedXy symmetry of the Cooper pairs. This calculation was
site cluster,U/t=20 andV/t=1.2, where we have set the d0ne using the largdh-approach through O(W).
hopping energy scale to=0.061 eV, so that we associate
the mid-infrared band observed experimentally with the ondure appearing at low frequencies. This behavior is com-
from exact diagonalization calculations. In this way, we re-monly observed in metallicg-salts close to the metal-
cover the main features appearing in the experimental datif)sulator transitioht and from Fig. 12 we note that the low-
including the incoherent high-frequency feature and the feaenergy feature can be misinterpreted as being part of the

Drude peak. Caution is in order when comparing our results

1500.0 with experimental data as shown in Fig. 12 because some

' Y features such as the dip appearing at about 0.17 eV have
6-(ET),CoCS(SCN). ‘ _ :

— L=16,0=20t, V=1.2 been interpreted iM-(ET),RbZn(SCN), (where a structural
transition takes place with lowering temperajues being
caused by the coupling to vibronic modes of the ET
molecules’® More experimental and theoretical work is
needed to understand this issue better.

10000 | |

o(w)(tzem)”

[42]
o
[=]
o

V. SUPERCONDUCTIVITY

In the present section we discuss the possibility of having
e superconductivity close to the charge-ordering transition in-
0%% 0.5 1.0 15 duced by the short-range charge fluctuations which appear in
o(eV) the metallic phase. Here we extend the discussion presented
in Ref. 6 and provide full details of the calculations. We also
consider the binding energy of holes using a Lanczos calcu-

FIG. 12. Comparison of the optical conductivity computed from
Lanczos diagonalization oh=16 site clusters with experimental

results(Ref. 39 for the metallic saly-(BEDT-TTF),CsCo(SCN). lation.

For the exact diagonalization results we have chdden20t and

V=1.2. In order to fit the data we chode=0.061 eV, which can A. Large N: Pairing symmetry

be compared to values from kel band-structure calculations I T

(Ref. 40. The lattice parameters fat-(BEDT-TTF),CsCo(SCN) Within the largeN approach, superconductivity is pos-

area=9.804 A, c=4.873 A, andV e =4V o =2074 &, where ~ SibIe at O(IN). As we have already seen ati) our ap-

V.o and V,,., are the volumes per unit cell and per molecule, Proach describes quasiparticle excitations with renormalized
respectively. The broadband at about 0.25 eV and the low-energ§@sses. Interaction between these quasiparticles can appear
feature at 0.13 eV can be explained from short-range charge ordeft the next-to-leading order of O(d). The effective inter-

ing induced by the intersite Coulomb repulsignThis behavior is ~ action between electrons are those represented diagrammati-
characteristic of several quarter-filled layered metallic salts whictcally in Fig. 3b); only the three-leg vertex shown in Fig.
undergo a metal-insulator transition at sufficiently low tempera-1(a) contributes to the effective interaction through order
tures. O(1N).
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Using the Feynman rules introduced ab@see Fig. 8)], larity due to checkerboard charge ordering at the )

the interaction between the quasipartic®€k,k’) reads wave vectors. We note that the effective interacttdnob-
, B 5 , tained from Eq.(35), which is valid on the whole Brillouin
O(k=k',0p=wn) == [ Dre(kK=k" 0= wn) zone, coincides only with the one obtained using slave boson
+2uDpy (K=K, 0 — @) approaches, when it is evaluated at the Fermi surfagais
is not true for wave vectors outside the Fermi surface.
+Dn(k=K" op—wn)], (39 In weak coupling, we use this effective potential to com-

where » is the chemical potential anB,;, are the compo- Puté the effective couplings in the different pairing channels
nents of the boson propagator which are obtained from DysOr irreducible representations of the order parametét,
on’s equation(23). =(dy2_y2,dyy,S)]. In this way we project out the interaction
In Fig. 13 we plot the dependence ®(q=k—k’)  Wwith a certain symmetry. The critical temperatdigcan then
=0(q,0—0)/(8/2), that is, the static limit of the effective be estimated fronT.;=1.13weexp(—1/|\;|), Wherew, is a
interaction mediating the possible pairing between the quasuitable cutoff frequency and; are the effective couplings
siparticles. This clearly shows the development of the singuwith different symmetries. These are defineda¥:

L | @atod [ @oehatvent gk
~(2m)?

N , (36)

| @i

where the functiong;(k) encode the different pairing sym- channel,xdxy, becomes attractive whereas other couplings
metries, and are the quasiparticle velocities at the Fermi hecome more repulsive. However, we note that the couplings
surface. The integrations are restricted to the Fermi surfaceyre rather small. This implies that critical temperatures are
\; measures the strength of the interaction between electrorspected to be small. Similar conclusions have been reached
at the Fermi surface in a given symmetry channdf N\;  with largeN treatments of théJ-infinite Hubbard model at
>0, electrons are repelled. Hence, superconductivity is only/=0 close to half filling*? Exact diagonalization results also
possible wher\;<0. In Fig. 14 we plot the dependence of

the effective couplings in the possible symmetry channels ‘ '
with V/t. 0.09 | T A
We observe that near the charge-ordering instability, but
still in the metallic phase/<V,, the coupling in thed,, 0.07 1 I
0.05 i
\e[ff(X’Y) < 7\‘
0.03 | P P4
0.01 | / 7"dxzyz
y -0.01 | de 1
-0.03 L L L
0.0 02 0.4 06 | 0.8
Vit (V/t)c

FIG. 15. Schematic plot showing the Fourier transform of the
effective potential,V¢¢1(ay,q,), for V/it~(V/t). to real space.
Vei1(X,Y) is understood as follows. A quasiparticle is placed at the
origin. For instance, if another quasiparticle is placed also at the
origin there is a large repulsion between them due to the large
on-site Coulomb repulsion. This is shown by the large positive ver-

FIG. 14. Dependence of the effective couplings witht as  tical bar at the origin. At neighboring sitéalong thex andy direc-
defined in Eq(36) in the different symmetry channels. Close to the tions) the effective potential between quasiparticles is also positive,
charge-ordering transition pairing in thg, channel becomes fa- i.e., repulsive. However, at the next-nearest-neighbor sikmg
vorable while other possible pairing symmetries are repulsive fothe diagonals of the latti¢gethe potential becomes attractive. This
any V. leads tod,, pairing of the quasiparticles.
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lead to similar conclusion$. Although the eigenvalues are a | U8 T ot )
small, our results are nontrivial and show a tendency of the 10| . L:l.g 04| o verat ]
02 F x—xv=2t |}

model to Cooper pairing in thd,, channel. Intuitively one
would think that superconductivity is less and less favorable 02 [

. . . . 05 r 0.4 [
when increasing, due to the repulsion between electrons in o6l \ 1
neighboring sites. Contrary to this intuition we find that e VY YT XT
short-range charge fluctuations can mediate pairing close t
Ve

0.0

Eg(2 holes)

g e e

(2 holes)/t

In Fig. 13 we observe that as we incredsehe effective
interaction becomes more repulsive at small momentumui® 05 |
transfer. On the other hand, they become more attractive fol
momenta transfer close tar(w). Thatd,, symmetry is fa-
vored can be more clearly understood from Fig. 15 which
shows a schematic plot of the Fourier transformvt«(q)
(see Fig. 13 One sees that the potential is negative for an , ‘ ‘ ‘
electron placed at the nearest-neighbor diagonal sites of th: 00 1.0 20 Vit 3.0 4.0 5.0
lattice while it is positive along the andy directions. This is
in contrast to the effective potential resulting from spin fluc-  FIG. 16. Binding energy of two holes for different values\of
tuations which show the opposite behavior. This can be unandU=20t from exact diagonalisation calculations br=16 and
derstood from previous calculations on a three-dimensional =20 clusters. Close to the charge-ordering transition, in the range,
extended Hubbard model close to half filling within RPA V>1.&, binding of two holes becomes favorablé, denotes the
performed by Scalapino, Loh, and Hirsthyhich found that ~ value of V at which the metal-insulator transition is estimated to
the effective potential for charge fluctuations hasegative  take place from Lanczos calculations of the Drude weight. Note that
divergence at 4, ) as the transition is approached whereasthe value ofV at which & (2 holeg becomes negative is robust
for spin fluctuations it is positively divergintf. Due to the against increasing the cluster size frdr=16 to L=20. These
fact that the Fermi surface at one-quarter filling is srfvad rt_es_u_lts are c_onsisten_t with large-calculations suppprting tht_a_pos-
two points in the Fermi surface are connected by then() sibility of pair formation close to the charge-ordering transition.
wave vecto}, the interaction is less effective in inducing
pairing as compared to spin fluctuations in nearly antiferrofind that this happens at about=1.6. This finite-size scal-
magnetic metals close to half filling. ing is shown in the inset of Fig. 16 for values dfclose to
The T values shown in the phase diagram in Ref. 6 arghe metal-insulator transition. Remarkably, the binding en-
larger than the values that would be obtainedTg§ from  ergy of two holes changes only slightly in the range of values
the BCS equation. In Ref. B, (for eachV) was taken to be t<V<2t when going fromL =16 toL =20. However, in the
the temperature below which the coupling, ~becomes regionV>V.=2t, the results change significantly as we in-
negative. Such a calculation is indicative of superconductiverease the size of the cluster frob=16 to 20, and the
ity. However, the appropriate way to obtaip is by solving  binding energy would eventually extrapolate to a positive
the associated Eliashberg gap equation. value in the thermodynamic limit. It is interesting that this
In conclusion, in the present study we find tendencies taegion corresponds to the insulating phase found e&rlier
superconductivity in thel,, channel mediated by short-range from Lanczos calculations of the Drude weight. An interpre-
charge fluctuations which appear in the metallic phase closgtion of our results can be made based on previous

to the charge-ordering instability. works*43 which studied the binding energy of an extended
Hubbard model of the high~, superconductors close to half
B. Lanczos diagonalization: Binding energies filing as a function ofV. As V is increased charge fluctua-

We have computed the binding energy of two holes forions associated with checkerboard charge ordering increase
different values ofv/t andU =20t on different clusters. The 2nd the quasiparticles existing at smélgradually dress up
binding energy of two holes for =16 is defined £8-4° with a cloud of checkerboard charge excitations. This leaves

signatures in the one-electron dynamical properties as ex-

Eg(2 holes=[E(6)—E(8)]—2[E(7)—E(8)], (37 plained in previous sections. Further increasiny déads to
pairing between the quasiparticles mediated by the strong

whereE(N,) is the energy of the system witk, electrons. charge fluctuation®* IncreasingV even further drives the

In Fig. 16 we plot the binding energy for different values system into the insulating phase.
of V. Initially, as we increas¥, the binding energy becomes  Summarizing, a definitive conclusion about superconduc-
more positive. This corresponds to the weak-coupling regimdivity cannot be made from our results. However, it is re-
where one naively expects that keeps the quasiparticles markable that both largi-and Lanczos diagonalization cal-
farther apart. Further increasing ®f closer to the metal- culations show a similar tendency to pairing of quasiparticles
insulator transition but still in the metallic phase leads to ain the metallic phase close to the charge-ordering transition.
negative binding energy of two holes. From finite-size scaliargeN theory singles out thd,, symmetry as the preferred
ing of the binding energy of clusters up to=20 sites, we pairing channel of the quasiparticles. This symmetry is con-
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sistent with the checkerboard charge order present in the re- An important issue to be resolved concerns the role of
gion where the Lanczos pairing energy becomes negative. spin fluctuations in the quarter-filled materials. To first order
in 1/N, the largeN approach used here does not take spin
VI. CONCLUSIONS fluctuations into accourff Measurements of the nuclear-
. o magnetic-resonance relaxation rate and Knight shift should
In summary, using a combination of larfeand Lanczos e done in the metallic phase for the relevant superconduct-
techniques we have explored the dynamical properties of thgys_ if the spin fluctuations are not important there should be
extended Hubbard model at quarter filling. This is motivated,q enhancement of the Korringa ratio. This is in contrast to
by its relevance to a large class of superconducting layereghe large enhancements seenciiBEDT-TTF),X supercon-
organic molecular crystals. The correlation functions com-yjctors which are close to an antiferromagnetic Mott
puted from largeN theory and Lanczos techniques are foundisy|ator®®
to be in good agreement. Indeed, close to the charge-ordering one way to theoretically investigate the role of the anti-
transition driven by the intersite Coulomb repulsidf,sev-  ferromagnetic spin fluctuations that may be present near the
eral features are found. charge-ordering transition is as follows. Well into the insu-
(i) The quasiparticle weigh, is rapidly suppressed near |ating charge-ordered phagee., for V>t) it is known that
the charge-ordering transition. _ _there is an antiferromagnetic exchange interactidh
(if) Spectral density is enhanced at frequencies ranging. 4t4/gv3 that acts along théiagonalsof the square latticé.
fromt to 3t, which is also reflected in the optical conductiv- some remnant of this effect will still be present when there is
ity. _ _ short-range charge order. This could be modeled by consid-
(i) From the computation of the electron scattering rateering at—J'—V model where the)’ acts only along the

we find Fermi-liquid behavior up t§~T*, whereT* does  giagonals. This model could be studied by the same Iarge-
not depend stror_lgly ON. For T>T* the scattering rate be- method used previously to study a large familytefd—V
haves linearly withT. _ _ models! There it was found that the superexchange, acting
~ (iv) From largeN calculations we find that superconduc- gjong the vertical and horizontal lattice directions, produced
tivity with d,, symmetry is favored close to the charge-q, , superconductivity. Based on that work we anticipate
ordering transition. Exact diagonalization calculations of theynat the effect of the superexchange, which now acts in di-
_binding energy of two holes are consistent with this possibil-yactions rotated by 45°, will be to produdg, superconduc-
Ity. ) o ] . tivity. Hence, it is possible that charge and spin fluctuations
Given our prediction of unconventional superconductivity york together cooperatively to produde, pairing.
in the # and B” molecular crystals it is desirable that more Y
measurements be made to test for this. The only evidence so
far comes from a measurement of the temperature depen-
dence of the London penetration depth oB"- We acknowledge helpful discussions with J. S. Brooks, E.
(BEDT-TTF),SF,CH,CF,S0;. It was found to go likeT® at  Dagotto, M. Dressel, A. Foussats, R. Giannetta, P. Horsch, E.
low temperature&® This is inconsistent with aswave state, Koch, R. Noack, B. Powell, J. Wosnitza, Z. Hasan, J. Riera,
but also deviates significantly from the linear temperatureR. Zeyher, and M. Vojta. We thank J. Wosnitza for showing
dependence expected fodavave state. On the other hand, us unpublished experimental results and K. Yamamoto for
the temperature dependence of the heat capacity is consistesgnding his unpublished optical data to us. J.M. and M.C.
with sswave pairing!’ Electronic Raman scattering could be were supported by European Community program “Improv-
used to investigate the symmetry of the superconducting oling Human Potential” under Contract No. HPMF-CT-2000-
der parameter. Fod,, symmetry, Raman scattering in the 00870(J.M.) and Contract No. IHP-HPMF-CT-2001-01185
superconducting state should show, at low frequencies, eithéM.C.). Work at UQ was supported by the Australian Re-
w, »°, or w behavior forByig, Byg, and,A;q symmetries, search Council. A.G. thanks Fundaciéntorchas for partial
respectively’® financial support.
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