29 research outputs found

    Taxonomic Distinctness of Demersal Fishes of the California Current: Moving Beyond Simple Measures of Diversity for Marine Ecosystem-Based Management

    Get PDF
    BACKGROUND: Large-scale patterns or trends in species diversity have long interested ecologists. The classic pattern is for diversity (e.g., species richness) to decrease with increasing latitude. Taxonomic distinctness is a diversity measure based on the relatedness of the species within a sample. Here we examined patterns of taxonomic distinctness in relation to latitude (ca. 32-48 degrees N) and depth (ca. 50-1220 m) for demersal fishes on the continental shelf and slope of the US Pacific coast. METHODOLOGY/PRINCIPAL FINDINGS: Both average taxonomic distinctness (AvTD) and variation in taxonomic distinctness (VarTD) changed with latitude and depth. AvTD was highest at approximately 500 m and lowest at around 200 m bottom depth. Latitudinal trends in AvTD were somewhat weaker and were depth-specific. AvTD increased with latitude on the shelf (50-150 m) but tended to decrease with latitude at deeper depths. Variation in taxonomic distinctness (VarTD) was highest around 300 m. As with AvTD, latitudinal trends in VarTD were depth-specific. On the shelf (50-150 m), VarTD increased with latitude, while in deeper areas the patterns were more complex. Closer inspection of the data showed that the number and distribution of species within the class Chondrichthyes were the primary drivers of the overall patterns seen in AvTD and VarTD, while the relatedness and distribution of species in the order Scorpaeniformes appeared to cause the relatively low observed values of AvTD at around 200 m. CONCLUSIONS/SIGNIFICANCE: These trends contrast to some extent the patterns seen in earlier studies for species richness and evenness in demersal fishes along this coast and add to our understanding of diversity of the demersal fishes of the California Current

    Does habitat complexity inluence ish recruitment?

    Get PDF
    Human activities facilitate coastal habitat transformation and homogenization. The spread of marine invasive species is one example. This in turn may inluence ish recruitment and the subsequent replenishment of adult assemblages. We tested habitat complexity effect on ish (Teleostei) recruitment by experimentally manipulating meadows of the habitat-forming invasive macroalga Caulerpa taxifolia (Chlorophyta). Among the fourteen ish species recorded during the experiment, only two labrids (Coris julis and Symphodus ocellatus) settled in abundance among these meadows. Patterns in the abundance of these juveniles suggested that reduced tri-dimensional meadow complexity may reduce habitat quality and result in altered habitat choices and / or differential mortality of juveniles, therefore reducing ish recruitment and likely the abundance of adults

    Assessing the multicomponent aspect of coral fish diversity : the impact of sampling unit dimensions

    No full text
    The influence of variations in sampling unit dimensions on the assessment of fish species structuring has been widely documented. However, this issue has been restricted to a very limited range of community and population indices (mainly species richness and density). Here, we have investigated this issue through the analysis of 13 diversity indices related to 3 diversity components (number of species, evenness and functional diversity). We analyzed a large set of 257 standardized underwater visual census (UVC) transects dealing with 254 coral fish species. The sensitivity of the indices to the variation in sampling unit dimensions was studied by comparing a range of 55 couples of transect length and width representing 34 sampling surfaces. We found that the extent and profile of the sensitivity to changes in transect dimensions strongly varied both from one index to another and from one dimension to another (length and width). The most sensitive indices were more strongly impacted by variation in length than width. We also showed that for a fixed transect surface, the couple of chosen length and width may alter the assessment of indices related to each of the three main diversity components studied. Some widely used diversity indices, such as species richness and Shannon index, appeared to be very sensitive to changes in transect length and width. In contrast, while still very little used in coral fish studies, two functional diversity indices (FDiv, FEve), and to a lesser extent an evenness index (Berger-Parker), remained robust in the face of change in sampling dimensions. By showing that the variation in sampling dimensions (length, width and surface) may impact diversity indices in a contrasting manner, we stress the need to take into account the sensitivity of the indices to this criterion in the process of selection of the indices to be analyzed in diversity studies. Finally, we found that 30 m long*5 m wide transects might be a suitable compromise size for assessing the patterns of each of the three major complementary components of coral fish diversity

    Contribution to the symposium: 'sustainable use of baltic sea resources' original article a three-dimensional view on biodiversity changes: Spatial, temporal, and functional perspectives on fish communities in the baltic sea

    No full text
    Fisheries and marine ecosystem-based management requires a holistic understanding of the dynamics of fish communities and their responses to changes in environmental conditions. Environmental conditions can simultaneously shape the spatial distribution and the temporal dynamics of a population, which together can trigger changes in the functional structure of communities. Here, we developed a comprehensive framework based on complementary multivariate statistical methodologies to simultaneously investigate the effects of environmental conditions on the spatial, temporal and functional dynamics of species assemblages. The framework is tested using survey data collected during more than 4000 fisheries hauls over the Baltic Sea between 2001 and 2016. The approach revealed the Baltic fish community to be structured into three sub-assemblages along a strong and temporally stable salinity gradient decreasing from West to the East. Additionally, we highlight a mismatch between species and functional richness associated with a lower functional redundancy in the Baltic Proper compared with other sub-areas, suggesting an ecosystem more susceptible to external pressures. Based on a large dataset of community data analysed in an innovative and comprehensive way, we could disentangle the effects of environmental changes on the structure of biotic communities-key information for the management and conservation of ecosystems. VC International Council for the Exploration of the Sea 2018
    corecore