22 research outputs found

    The MetaInvert soil invertebrate genome resource provides insights into below-ground biodiversity and evolution

    Get PDF
    Soil invertebrates are among the least understood metazoans on Earth. Thus far, the lack of taxonomically broad and dense genomic resources has made it hard to thoroughly investigate their evolution and ecology. With MetaInvert we provide draft genome assemblies for 232 soil invertebrate species, representing 14 common groups and 94 families. We show that this data substantially extends the taxonomic scope of DNA- or RNA-based taxonomic identification. Moreover, we confirm that theories of genome evolution cannot be generalised across evolutionarily distinct invertebrate groups. The soil invertebrate genomes presented here will support the management of soil biodiversity through molecular monitoring of community composition and function, and the discovery of evolutionary adaptations to the challenges of soil conditions.The MetaInvert database provides draft genome assemblies for 232 soil invertebrate species, representing 14 common groups and 94 families, that will aid in the discovery and management of soil biodiversity

    Gene abundance linked to climate zone: Parallel evolution of gene content along elevation gradients in lichenized fungi

    Get PDF
    IntroductionIntraspecific genomic variability affects a species' adaptive potential toward climatic conditions. Variation in gene content across populations and environments may point at genomic adaptations to specific environments. The lichen symbiosis, a stable association of fungal and photobiont partners, offers an excellent system to study environmentally driven gene content variation. Many of these species have remarkable environmental tolerances, and often form populations across different climate zones. Here, we combine comparative and population genomics to assess the presence and absence of genes in high and low elevation genomes of two lichenized fungi of the genus Umbilicaria. MethodsThe two species have non-overlapping ranges, but occupy similar climatic niches in North America (U. phaea) and Europe (U. pustulata): high elevation populations are located in the cold temperate zone and low elevation populations in the Mediterranean zone. We assessed gene content variation along replicated elevation gradients in each of the two species, based on a total of 2050 individuals across 26 populations. Specifically, we assessed shared orthologs across species within the same climate zone, and tracked, which genes increase or decrease in abundance within populations along elevation. ResultsIn total, we found 16 orthogroups with shared orthologous genes in genomes at low elevation and 13 at high elevation. Coverage analysis revealed one ortholog that is exclusive to genomes at low elevation. Conserved domain search revealed domains common to the protein kinase superfamily. We traced the discovered ortholog in populations along five replicated elevation gradients on both continents and found that the number of this protein kinase gene linearly declined in abundance with increasing elevation, and was absent in the highest populations. DiscussionWe consider the parallel loss of an ortholog in two species and in two geographic settings a rare find, and a step forward in understanding the genomic underpinnings of climatic tolerances in lichenized fungi. In addition, the tracking of gene content variation provides a widely applicable framework for retrieving biogeographical determinants of gene presence/absence patterns. Our work provides insights into gene content variation of lichenized fungi in relation to climatic gradients, suggesting a new research direction with implications for understanding evolutionary trajectories of complex symbioses in relation to climatic change

    Metatranscriptomics reveals contrasting effects of elevation on the activity of bacteria and bacterial viruses in soil

    Get PDF
    Soil microbial diversity affects ecosystem functioning and global biogeochemical cycles. Soil bacterial communities catalyse a diversity of biogeochemical reactions and have thus sparked considerable scientific interest. One driver of bacterial community dynamics in natural ecosystems has so far been largely neglected: the predator-prey interactions between bacterial viruses (bacteriophages) and bacteria. To generate ground level knowledge on environmental drivers of these particular predator-prey dynamics, we propose an activity-based ecological framework to simultaneous capture community dynamics of bacteria and bacteriophages in soils. An ecological framework and specifically the analyses of community dynamics across latitudinal and elevational gradients have been widely used in ecology to understand community-wide responses of innumerable taxa to environmental change, in particular to climate. Here, we tested the hypothesis that the activity of bacteria and bacteriophages codeclines across an elevational gradient. We used metatranscriptomics to investigate bacterial and bacteriophage activity patterns at five sites across 400 elevational metres in the Swiss Alps in 2015 and 2017. We found that metabolic activity (transcription levels) of bacteria declined significantly with increasing elevation, but activity of bacteriophages did not. We showed that bacteriophages are consistently active in soil along the entire gradient, making bacteriophage activity patterns divergent from that of their putative bacterial prey. Future efforts will be necessary to link the environment-activity relationship to predator-prey dynamics, and to understand the magnitude of viral contributions to carbon, nitrogen and phosphorus cycling when infection causes bacterial cell death, a process that may represent an overlooked component of soil biogeochemical cycles

    Scatter-hoarding birds disperse seeds to sites unfavorable for plant regeneration

    Get PDF
    Scatter-hoarding birds provide effective long-distance seed dispersal for plants. Transporting seeds far promotes population spread, colonization of new areas, and connectivity between populations. However, whether seeds transported over long distances are deposited in habitats favorable to plant regeneration has rarely been investigated, mainly due to methodological constraints. To investigate dispersal patterns and distances of Swiss stone pine (Pinus cembra) seeds we utilized advances in tracking technology to track the movements of their sole disperser, the spotted nutcracker (Nucifraga caryocatactes). We found routine individual movements between single seed harvesting and seed caching site. Harvesting sites of individual birds overlapped, whereas seed caching sites were separated and located on average 5.3 km away from the harvesting site. Interestingly, most distant caching sites were located at low elevations and in spruce forest, where Swiss stone pine does not naturally occur. This suggests that nutcrackers disperse seeds over long distances but that a large portion of these seeds are cached outside the known pine habitat. Therefore, we conclude that the implications of such long-distance seed dispersal movements for plant populations should be carefully considered in combination with the effects of habitat quality on plant recruitment

    Mutualistic and antagonistic effects of plant-animal and plant-fungal interactions on plant recruitment at the tree line

    No full text
    Antagonistic and mutualistic species interactions provide important ecosystem functions affecting plant population dynamics and distribution. Many of these functions are important for the regeneration of plants, either by limiting or facilitating successful transition between life stages. Interactions can occur across the whole geographical range of a species and thereby encompass different environmental gradients, such as changes in temperature or water availability. Understanding the joint effects of species interactions and environmental factors on the regeneration of plants is key for understanding plant population dynamics under global change and could provide important recommendations for managing and conservation efforts. My thesis aimed at advancing the knowledge of how species interactions depend on environmental conditions and jointly affect plant recruitment along the elevational distribution of plants. This thesis includes three chapters in which I studied the effects of animal seed deposition, seed predation, mycorrhizal and pathogenic fungi occurrences as well as abiotic and biotic environmental factors on the recruitment of Swiss stone pine (Pinus cembra). I conducted fieldwork in the Swiss Alps across the entire elevational distribution of the pine (1850 – 2250 m a.s.l). Over a period of three years, I recorded animal seed deposition by spotted nutcrackers (Nucifraga caryocatactes) and conducted seed translocation experiments. Further, I assessed fungal communities using DNA metabarcoding. I measured abiotic environmental factors such as temperature, water and light availability, pH, as well as biotic environmental factors such as distance to conspecific adults and ground vegetation cover. In my thesis, I used a broad range of community ecology approaches, from seed dispersal ecology to experimental plant ecology and microbial ecology. First, I investigated the effects of environmental factors on four recruitment processes (i.e. seed deposition, seed predation, seed germination, seedling survival) of Swiss stone pine. Further, I aimed at identifying the most important recruitment processes potentially limiting pine regeneration across its elevational range. To investigate pine recruitment, I firstly tested how seed deposition, seed predation, seed germination and seedling survival were affected by the microhabitat characteristics ultimately determining where a seed arrives in the environment (i.e. canopy cover & ground vegetation cover). Secondly, I applied a sensitivity analysis to investigate which of the four recruitment processes poses limitation to the pines’ regeneration across its range. My results reveal that the importance of particular recruitment processes varies along the pines’ elevational range. I found that at the lower range margin and the distribution centre seed germination and seedling survival were the main limiting factors, whereas animal-mediated seed dispersal became especially important at the upper range margin. My study contributes to the field with a new approach for disentangling the relative importance of recruitment processes across environmental gradients and thereby could help to project how plant recruitment might respond to future changes in environmental conditions. The second aim of my study was to investigate how abiotic and biotic environmental factors affect the occurrence of Swiss stone pine-associated pathogenic and mutualistic fungi by combining field measurements of environmental factors with a DNA metabarcoding approach. I identified potentially important fungal interaction partners of the pine and determined drivers shaping their occurrences. My results reveal that generalist fungi were not affected by abiotic and biotic environmental factors. However, specialist pathogens showed patterns according to the Janzen-Connell framework (i.e. accumulation of pathogen close to adult plants). Interestingly, I found evidence for an “inverse” Janzen-Connell effect, i.e. high abundance of a specialist mutualist close to adult plants, potentially mitigating effects of soil pathogens close to parent trees. Further, I found that pine-associated fungi are distributed widely within and beyond the range of their host plant, adding knowledge on how mutualisms and antagonisms might be affected when plants move their distributional range upwards. Finally, I investigated how known and unknown plant-associated fungi affect the regeneration of Swiss stone pine in an environmental context. My results suggest that seedling establishment was most strongly affected by abiotic environmental factors, such as light availability and maximum summer temperature. Further, the results indicate that seedling survival was affected by biotic environmental factors, i.e. fungal agents, with high abundances of a known fungal pathogen co-occurring with low seedling survival rates. My results also reveal that known mycorrhizal partners as well as a large number of unknown fungal operational taxonomic units (OTUs) were associated with the survival of seedlings. My findings highlight the importance of plant-fungal interactions for plant recruitment and offer a feasible approach for the identification of hidden plant-fungal associations in highly complex DNA metabarcoding datasets. This approach offers a valuable tool for investigating plant-microbe interactions, ultimately helping to understand plant population dynamics. My dissertation adds to a deeper understanding on the linkage between plant regeneration and species interactions, especially on how plant-animal and plant-fungal interactions in concert with environmental factors shape plant recruitment. My study reveals the importance of animal-mediated seed dispersal and fungal pathogens in plant recruitment with consequences for potential range shifts of plant species. My thesis has important implications for conservation and management efforts by informing on key species interactions under environmental change

    Data from: The origin of the serpentine endemic Minuartia laricifolia subsp. ophiolitica by vicariance and competitive exclusion

    No full text
    Serpentine soils harbour a unique flora that is rich in endemics. We examined the evolution of serpentine endemism in Minuartia laricifolia, which has two ecologically distinct subspecies with disjunct distributions: subsp. laricifolia on siliceous rocks in the western Alps and eastern Pyrenees and subsp. ophiolitica on serpentine in the northern Apennines. We analysed AFLPs and chloroplast sequences from 30 populations to examine their relationships and how their current distributions and ecologies were influenced by Quaternary climatic changes. Minuartia laricifolia was divided into four groups with a BAPS cluster analysis of the AFLP data, one group consisted only of subsp. ophiolitica, while three groups were found within subsp. laricifolia: Maritime Alps, north-western Alps and central Alps. The same groups were recovered in a neighbour-joining tree, although subsp. ophiolitica was nested within the Maritime Alps group of subsp. laricifolia. Subspecies ophiolitica contained three different chloroplast haplotypes, which were also found in the Maritime Alps group of subsp. laricifolia. Given its high genetic diversity, subsp. ophiolitica appears to have arisen from subsp. laricifolia by vicariance instead of by long-distance dispersal. Genetic and geographic evidence point to the Maritime Alps populations of subsp. laricifolia as the closest relatives of subsp. ophiolitica. We hypothesize that M. laricifolia was also able to grow on nonserpentine rocks in the northern Apennines during glacial periods when the vegetation was more open, but that only the serpentine-adapted populations were able to persist until the present due to their competitive exclusion from more favourable habitats

    Identification and expression of functionally conserved circadian clock genes in lichen-forming fungi

    Get PDF
    Lichen-forming fungi establish stable symbioses with green algae or cyanobacteria. Many species have broad distributions, both in geographic and ecological space, making them ideal subjects to study organism-environment interactions. However, little is known about the specific mechanisms that contribute to environmental adaptation in lichen-forming fungi. The circadian clock provides a well-described mechanism that contributes to regional adaptation across a variety of species, including fungi. Here, we identify the putative circadian clock components in phylogenetically divergent lichen-forming fungi. The core circadian genes (frq, wc-1, wc-2, frh) are present across the Fungi, including 31 lichen-forming species, and their evolutionary trajectories mirror overall fungal evolution. Comparative analyses of the clock genes indicate conserved domain architecture among lichen- and non-lichen-forming taxa. We used RT-qPCR to examine the core circadian loop of two unrelated lichen-forming fungi, Umbilicaria pustulata (Lecanoromycetes) and Dermatocarpon miniatum (Eurotiomycetes), to determine that the putative frq gene is activated in a light-dependent manner similar to the model fungus Neurospora crassa. Together, these results demonstrate that lichen-forming fungi retain functional light-responsive mechanisms, including a functioning circadian clock. Our findings provide a stepping stone into investigating the circadian clock in the lichen symbiosis, e.g. its role in adaptation, and in synchronizing the symbiotic interaction

    cp_haplotypes

    No full text
    The aligned sequences of the eight chloroplast haplotypes recovered in the study

    Gene abundance linked to climate zone: Parallel evolution of gene content along elevation gradients in lichenized fungi

    No full text
    IntroductionIntraspecific genomic variability affects a species' adaptive potential toward climatic conditions. Variation in gene content across populations and environments may point at genomic adaptations to specific environments. The lichen symbiosis, a stable association of fungal and photobiont partners, offers an excellent system to study environmentally driven gene content variation. Many of these species have remarkable environmental tolerances, and often form populations across different climate zones. Here, we combine comparative and population genomics to assess the presence and absence of genes in high and low elevation genomes of two lichenized fungi of the genus Umbilicaria. MethodsThe two species have non-overlapping ranges, but occupy similar climatic niches in North America (U. phaea) and Europe (U. pustulata): high elevation populations are located in the cold temperate zone and low elevation populations in the Mediterranean zone. We assessed gene content variation along replicated elevation gradients in each of the two species, based on a total of 2050 individuals across 26 populations. Specifically, we assessed shared orthologs across species within the same climate zone, and tracked, which genes increase or decrease in abundance within populations along elevation. ResultsIn total, we found 16 orthogroups with shared orthologous genes in genomes at low elevation and 13 at high elevation. Coverage analysis revealed one ortholog that is exclusive to genomes at low elevation. Conserved domain search revealed domains common to the protein kinase superfamily. We traced the discovered ortholog in populations along five replicated elevation gradients on both continents and found that the number of this protein kinase gene linearly declined in abundance with increasing elevation, and was absent in the highest populations. DiscussionWe consider the parallel loss of an ortholog in two species and in two geographic settings a rare find, and a step forward in understanding the genomic underpinnings of climatic tolerances in lichenized fungi. In addition, the tracking of gene content variation provides a widely applicable framework for retrieving biogeographical determinants of gene presence/absence patterns. Our work provides insights into gene content variation of lichenized fungi in relation to climatic gradients, suggesting a new research direction with implications for understanding evolutionary trajectories of complex symbioses in relation to climatic change

    Protein kinase gene declines linearly with elevation: a shared genomic feature across species and continents in lichenized fungi suggests role in climate adaptation

    No full text
    Intraspecific genomic variability affects a species’ adaptive potential towards climatic conditions. Variation in gene content across populations and environments may point at genomic adaptations to specific environments. The lichen symbiosis, a stable association of fungal and photobiont partners, offers an excellent system to study environmentally driven gene content variation. Many species have remarkable environmental tolerances, and often form populations in different climate zones. Here we combine comparative and population genomics to assess the presence and absence of genes in high elevation and low elevation genomes of two lichenized fungi of the genus Umbilicaria. The two species have non-overlapping ranges, but occupy similar climatic niches in North America (U. phaea) and Europe (U. pustulata): high elevation populations are located in the cold temperate zone and low elevation populations in the Mediterranean zone. We assessed gene content variation along replicated elevation gradients in each of the two species, based on a total of 2050 individuals across 26 populations. Specifically, we assessed shared orthologs across species within the same climate zone, and tracked which genes increase or decrease in abundance within populations along elevation. In total, we found 16 orthogroups with shared orthologous genes in genomes at low elevation and 13 at high elevation. Coverage analysis revealed one ortholog that is exclusive to genomes at low elevation. Conserved domain search revealed domains common to the protein kinases (PKs) superfamily. We traced the discovered ortholog in populations along five replicated elevation gradients on both continents. The protein kinase gene linearly declined in abundance with increasing elevation, and was absent in the highest populations. We consider the parallel loss of an ortholog in two species and in two geographic settings a rare find, and a step forward in understanding the genomic underpinnings of climatic tolerances in lichenized fungi. In addition, the tracking of gene content variation provides a widely applicable framework for retrieving biogeographical determinants of gene presence/absence patterns. Our work provides insights into gene content variation of lichenized fungi in relation to climatic gradients, suggesting a new research direction with implications for understanding evolutionary trajectories of complex symbioses in relation to climatic change
    corecore