248 research outputs found
A constant of quantum motion in two dimensions in crossed magnetic and electric fields
We consider the quantum dynamics of a single particle in the plane under the
influence of a constant perpendicular magnetic and a crossed electric potential
field. For a class of smooth and small potentials we construct a non-trivial
invariant of motion. Do to so we proof that the Hamiltonian is unitarily
equivalent to an effective Hamiltonian which commutes with the observable of
kinetic energy.Comment: 18 pages, 2 figures; the title was changed and several typos
corrected; to appear in J. Phys. A: Math. Theor. 43 (2010
Mucosal Immunity in Toxoplasma Gondii Infection
Toxoplasma gondii is an intracellular parasite that frequently infects a large spectrum of warm-blooded animals. This parasite induces abortion and establishes both chronic and silent infections, particularly in the brain. Parasite penetration into the host activates a strong anti-parasite immune response. In the present paper, we will discuss the interplay between innate and adaptive immunity that occurs within the infected intestine to clear the parasite and to maintain intestinal homeostasis despite the exacerbation of an inflammatory immune response
Thermal evolution of the syn-tectonic Ainsa-Jaca basin (South Pyrenean Zone). New constraints from a multiproxy approach.
International audienceConstraining the Thermal history of tectonically active basins is of special importance for the petroleum industry. Indeed, the estimation of geothermal gradients and their evolution are basic parameters to understand the tectono-sedimentary evolution of fold-and-thrust belts and associated foreland basins. In this work, we focus on the turbiditic deposits of the Ainsa-Jaca basin (western part of the South Pyrenean Zone) which consist of an accreted foreland basin composed of Eocene syn-tectonic sediments. The aim is to quantify peak temperatures of the basin that underwent late diagenesis and low-grade metamorphism conditions during the Pyrenean activity. For this, turbiditic rocks and calcite veins (extensional and shear veins) were systematically sampled along a section over a thickness of 4 km through the Monte Perdido unit. In order to constrain the structures observed, sampling was accompanied with a detailed structural analysis. We have combined three thermometric indicators to evaluate peak temperature of rocks: Raman thermometry on carbonaceous material, fluid inclusion microthermometry on calcite/quartz shear and extensional veins and compositional chlorite thermometry on Fe-chlorite observed in shear veins. The Raman temperatures obtained show variations ranging from <160Β°C to 270Β°C. As the quantitative Raman thermometry calibration is limited to 200Β°C, the peak temperatures belonging at 140-180Β°C range have been determined comparing Pyrenean Raman spectra to those of Glarus area. Indeed, Raman thermometry method has been calibrated recently using samples collected from Glarus Alps. To check the reliability of the Pyrenean Raman data, we confront Raman temperature to available temperatures estimated in this study using compositional chlorite thermometry and fluid inclusion methods. Temperatures determined by the three different methods converge. This result tends to confirm the efficiency of Raman thermometry in determining the maximum burial temperature of basin infill, taking into account that chlorite thermometry has been tested successfully in samples from the Monte Perdido thrust fault. Although our results are preliminary, they suggest that the various published peak temperatures of the Ainsa-Jaca basin do not seem so obvious and need to be carefully used. In order to better constrain the thermal history of South Pyrenean Zone, we are currently working on the acquisition of more data
Cellular expression, trafficking, and function of two isoforms of human ULBP5/RAET1G
Background:
The activating immunoreceptor NKG2D is expressed on Natural Killer (NK) cells and subsets of T cells. NKG2D contributes to anti-tumour and anti-viral immune responses in vitro and in vivo. The ligands for NKG2D in humans are diverse proteins of the MIC and ULBP/RAET families that are upregulated on the surface of virally infected cells and tumours. Two splicing variants of ULBP5/RAET1G have been cloned previously, but not extensively characterised.
Methodology/Principal Findings:
We pursue a number of approaches to characterise the expression, trafficking, and function of the two isoforms of ULBP5/RAET1G. We show that both transcripts are frequently expressed in cell lines derived from epithelial cancers, and in primary breast cancers. The full-length transcript, RAET1G1, is predicted to encode a molecule with transmembrane and cytoplasmic domains that are unique amongst NKG2D ligands. Using specific anti-RAET1G1 antiserum to stain tissue microarrays we show that RAET1G1 expression is highly restricted in normal tissues. RAET1G1 was expressed at a low level in normal gastrointestinal epithelial cells in a similar pattern to MICA. Both RAET1G1 and MICA showed increased expression in the gut of patients with celiac disease. In contrast to healthy tissues the RAET1G1 antiserum stained a wide variety or different primary tumour sections. Both endogenously expressed and transfected RAET1G1 was mainly found inside the cell, with a minority of the protein reaching the cell surface. Conversely the truncated splicing variant of RAET1G2 was shown to encode a soluble molecule that could be secreted from cells. Secreted RAET1G2 was shown to downregulate NKG2D receptor expression on NK cells and hence may represent a novel tumour immune evasion strategy.
Conclusions/Significance:
We demonstrate that the expression patterns of ULBP5RAET1G are very similar to the well-characterised NKG2D ligand, MICA. However the two isoforms of ULBP5/RAET1G have very different cellular localisations that are likely to reflect unique functionality
Broad MICA/B expression in the small bowel mucosa: a link between cellular stress and celiac disease
The MICA/B genes (MHC class I chain related genes A and B) encode for non conventional class I HLA molecules which have no role in antigen presentation. MICA/B are up-regulated by different stress conditions such as heat-shock, oxidative stress, neoplasic transformation and viral infection. Particularly, MICA/B are expressed in enterocytes where they can mediate enterocyte apoptosis when recognised by the activating NKG2D receptor present on intraepithelial lymphocytes. This mechanism was suggested to play a major pathogenic role in active celiac disease (CD). Due to the importance of MICA/B in CD pathogenesis we studied their expression in duodenal tissue from CD patients. By immunofluorescence confocal microscopy and flow cytometry we established that MICA/B was mainly intracellularly located in enterocytes. In addition, we identified MICA/B+ T cells in both the intraepithelial and lamina propria compartments. We also found MICA/B+ B cells, plasma cells and some macrophages in the lamina propria. The pattern of MICA/B staining in mucosal tissue in severe enteropathy was similar to that found in in vitro models of cellular stress. In such models, MICA/B were located in stress granules that are associated to the oxidative and ER stress response observed in active CD enteropathy. Our results suggest that expression of MICA/B in the intestinal mucosa of CD patients is linked to disregulation of mucosa homeostasis in which the stress response plays an active role.Fil: Allegretti, Yessica Lorena. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biologicas. Laboratorio de Investigaciones del Sistema Inmune; Argentina. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas; ArgentinaFil: Bondar, Constanza MarΓa. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biologicas. Laboratorio de Investigaciones del Sistema Inmune; Argentina. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas; ArgentinaFil: GuzmΓ‘n, Luciana. Provincia de Buenos Aires. Ministerio de Salud. Hospital de NiΓ±os "Sor MarΓa Ludovica" de la Plata; ArgentinaFil: Cueto Rua, Eduardo. Provincia de Buenos Aires. Ministerio de Salud. Hospital de NiΓ±os "Sor MarΓa Ludovica" de la Plata; ArgentinaFil: Chopita, Nestor. Provincia de Buenos Aires. Hospital Interzonal General de Agudos Gral. San Martin; ArgentinaFil: Fuertes, Mercedes Beatriz. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Instituto de BiologΓa y Medicina Experimental. FundaciΓ³n de Instituto de BiologΓa y Medicina Experimental. Instituto de BiologΓa y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuΓmica BiolΓ³gica; ArgentinaFil: Zwirner, Norberto Walter. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas. Instituto de BiologΓa y Medicina Experimental. FundaciΓ³n de Instituto de BiologΓa y Medicina Experimental. Instituto de BiologΓa y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de MicrobiologΓa; ArgentinaFil: Chirdo, Fernando Gabriel. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biologicas. Laboratorio de Investigaciones del Sistema Inmune; Argentina. Consejo Nacional de Investigaciones CientΓficas y TΓ©cnicas; Argentin
TBC-2 Is Required for Embryonic Yolk Protein Storage and Larval Survival during L1 Diapause in Caenorhabditis elegans
C. elegans first stage (L1) larvae hatched in the absence of food, arrest development and enter an L1 diapause, whereby they can survive starvation for several weeks. The physiological and metabolic requirements for survival during L1 diapause are poorly understood. However, yolk, a cholesterol binding/transport protein, has been suggested to serve as an energy source. Here, we demonstrate that C. elegans TBC-2, a RAB-5 GTPase Activating Protein (GAP) involved in early-to-late endosome transition, is important for yolk protein storage during embryogenesis and for L1 survival during starvation. We found during embryogenesis, that a yolk::green fluorescent protein fusion (YP170::GFP), disappeared much more quickly in tbc-2 mutant embryos as compared with wild-type control embryos. The premature disappearance of YP170::GFP in tbc-2 mutants is likely due to premature degradation in the lysosomes as we found that YP170::GFP showed increased colocalization with Lysotracker Red, a marker for acidic compartments. Furthermore, YP170::GFP disappearance in tbc-2 mutants required RAB-7, a regulator of endosome to lysosome trafficking. Although tbc-2 is not essential in fed animals, we discovered that tbc-2 mutant L1 larvae have strongly reduced survival when hatched in the absence of food. We show that tbc-2 mutant larvae are not defective in maintaining L1 diapause and that mutants defective in yolk uptake, rme-1 and rme-6, also had strongly reduced L1 survival when hatched in the absence of food. Our findings demonstrate that TBC-2 is required for yolk protein storage during embryonic development and provide strong correlative data indicating that yolk constitutes an important energy source for larval survival during L1 diapause
A Lipid Receptor Sorts Polyomavirus from the Endolysosome to the Endoplasmic Reticulum to Cause Infection
The mechanisms by which receptors guide intracellular virus transport are poorly characterized. The murine polyomavirus (Py) binds to the lipid receptor ganglioside GD1a and traffics to the endoplasmic reticulum (ER) where it enters the cytosol and then the nucleus to initiate infection. How Py reaches the ER is unclear. We show that Py is transported initially to the endolysosome where the low pH imparts a conformational change that enhances its subsequent ER-to-cytosol membrane penetration. GD1a stimulates not viral binding or entry, but rather sorting of Py from late endosomes and/or lysosomes to the ER, suggesting that GD1a binding is responsible for ER targeting. Consistent with this, an artificial particle coated with a GD1a antibody is transported to the ER. Our results provide a rationale for transport of Py through the endolysosome, demonstrate a novel endolysosome-to-ER transport pathway that is regulated by a lipid, and implicate ganglioside binding as a general ER targeting mechanism
Celiac disease: how complicated can it get?
In the small intestine of celiac disease patients, dietary wheat gluten and similar proteins in barley and rye trigger an inflammatory response. While strict adherence to a gluten-free diet induces full recovery in most patients, a small percentage of patients fail to recover. In a subset of these refractory celiac disease patients, an (aberrant) oligoclonal intraepithelial lymphocyte population develops into overt lymphoma. Celiac disease is strongly associated with HLA-DQ2 and/or HLA-DQ8, as both genotypes predispose for disease development. This association can be explained by the fact that gluten peptides can be presented in HLA-DQ2 and HLA-DQ8 molecules on antigen presenting cells. Gluten-specific CD4+ T cells in the lamina propria respond to these peptides, and this likely enhances cytotoxicity of intraepithelial lymphocytes against the intestinal epithelium. We propose a threshold model for the development of celiac disease, in which the efficiency of gluten presentation to CD4+ T cells determines the likelihood of developing celiac disease and its complications. Key factors that influence the efficiency of gluten presentation include: (1) the level of gluten intake, (2) the enzyme tissue transglutaminase 2 which modifies gluten into high affinity binding peptides for HLA-DQ2 and HLA-DQ8, (3) the HLA-DQ type, as HLA-DQ2 binds a wider range of gluten peptides than HLA-DQ8, (4) the gene dose of HLA-DQ2 and HLA-DQ8, and finally,(5) additional genetic polymorphisms that may influence T cell reactivity. This threshold model might also help to understand the development of refractory celiac disease and lymphoma
The SPINK gene family and celiac disease susceptibility
The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was determined for all four SPINK genes by quantitative reverse-transcription polymerase chain reaction in duodenal biopsy samples from untreated (nβ=β15) and diet-treated patients (nβ=β31) and controls (nβ=β16). Genetic association of the four SPINK genes was tested within a total of 18 haplotype tagging SNPs, one coding SNP, 310 patients, and 180 controls. The SPINK4 study cohort was further expanded to include 479 CD cases and 540 controls. SPINK4 DNA sequence analysis was performed on six members of a multigeneration CD family to detect possible point mutations or deletions. SPINK4 showed differential gene expression, which was at its highest in untreated patients and dropped sharply upon commencement of a gluten-free diet. Genetic association tests for all four SPINK genes were negative, including SPINK4 in the extended case/control cohort. No SPINK4 mutations or deletions were observed in the multigeneration CD family with linkage to chromosome 9p21-13 nor was the coding SNP disease-specific. SPINK4 exhibits CD pathology-related differential gene expression, likely derived from altered goblet cell activity. All of the four SPINK genes tested do not contribute to the genetic risk for CD in the Dutch population
Functional Dichotomy between NKG2D and CD28-Mediated Co-Stimulation in Human CD8+ T Cells
Both CD28 and NKG2D can function as co-stimulatory receptors in human CD8+ T cells. However, their independent functional contributions in distinct CD8+ T cell subsets are not well understood. In this study, CD8+ T cells in human peripheral blood- and lung-derived lymphocytes were analyzed for CD28 and NKG2D expression and function. We found a higher level of CD28 expression in PBMC-derived naΓ―ve (CD45RA+CD27+) and memory (CD45RAβCD27+) CD8+ T cells (CD28Hi), while its expression was significantly lower in effector (CD45RA+CD27β) CD8+ T cells (CD28Lo). Irrespective of the differences in the CD28 levels, NKG2D expression was comparable in all three CD8+ T cell subsets. CD28 and NKG2D expressions followed similar patterns in human lung-resident GILGFVFTL/HLA-A2-pentamer positive CD8+ T cells. Co-stimulation of CD28Lo effector T cells via NKG2D significantly increased IFN-Ξ³ and TNF-Ξ± levels. On the contrary, irrespective of its comparable levels, NKG2D-mediated co-stimulation failed to augment IFN-Ξ³ and TNF-Ξ± production in CD28Hi naΓ―ve/memory T cells. Additionally, CD28-mediated co-stimulation was obligatory for IL-2 generation and thereby its production was limited only to the CD28Hi naΓ―ve/memory subsets. MICA, a ligand for NKG2D was abundantly expressed in the tracheal epithelial cells, validating the use of NKG2D as the major co-stimulatory receptor by tissue-resident CD8+ effector T cells. Based on these findings, we conclude that NKG2D may provide an expanded level of co-stimulation to tissue-residing effector CD8+ T cells. Thus, incorporation of co-stimulation via NKG2D in addition to CD28 is essential to activate tumor or tissue-infiltrating effector CD8+ T cells. However, boosting a recall immune response via memory CD8+ T cells or vaccination to stimulate naΓ―ve CD8+ T cells would require CD28-mediated co-stimulation
- β¦