248 research outputs found

    Visualising 2-simplex formation in metabolic reactions

    Get PDF
    Understanding in silico the dynamics of metabolic reactions made by a large number of molecules has led to the development of different tools for visualising molecular interactions. However, most of them are mainly focused on quantitative aspects. We investigate the potentiality of the topological interpretation of the interaction-as-perception at the basis of a multiagent system, to tackle the complexity of visualising the emerging behaviour of a complex system. We model and simulate the glycolysis process as a multiagent system, and we perform topological data analysis of the molecular perceptions graphs, gained during the formation of the enzymatic complexes, to visualise the set of emerging patterns. Identifying expected patterns in terms of simplicial structures allows us to characterise metabolic reactions from a qualitative point of view and conceivably reveal the simulation reactivity trend

    Multiple verification in computational modeling of bone pathologies

    Full text link
    We introduce a model checking approach to diagnose the emerging of bone pathologies. The implementation of a new model of bone remodeling in PRISM has led to an interesting characterization of osteoporosis as a defective bone remodeling dynamics with respect to other bone pathologies. Our approach allows to derive three types of model checking-based diagnostic estimators. The first diagnostic measure focuses on the level of bone mineral density, which is currently used in medical practice. In addition, we have introduced a novel diagnostic estimator which uses the full patient clinical record, here simulated using the modeling framework. This estimator detects rapid (months) negative changes in bone mineral density. Independently of the actual bone mineral density, when the decrease occurs rapidly it is important to alarm the patient and monitor him/her more closely to detect insurgence of other bone co-morbidities. A third estimator takes into account the variance of the bone density, which could address the investigation of metabolic syndromes, diabetes and cancer. Our implementation could make use of different logical combinations of these statistical estimators and could incorporate other biomarkers for other systemic co-morbidities (for example diabetes and thalassemia). We are delighted to report that the combination of stochastic modeling with formal methods motivate new diagnostic framework for complex pathologies. In particular our approach takes into consideration important properties of biosystems such as multiscale and self-adaptiveness. The multi-diagnosis could be further expanded, inching towards the complexity of human diseases. Finally, we briefly introduce self-adaptiveness in formal methods which is a key property in the regulative mechanisms of biological systems and well known in other mathematical and engineering areas.Comment: In Proceedings CompMod 2011, arXiv:1109.104

    Large Scale In Silico Screening on Grid Infrastructures

    Get PDF
    Large-scale grid infrastructures for in silico drug discovery open opportunities of particular interest to neglected and emerging diseases. In 2005 and 2006, we have been able to deploy large scale in silico docking within the framework of the WISDOM initiative against Malaria and Avian Flu requiring about 105 years of CPU on the EGEE, Auvergrid and TWGrid infrastructures. These achievements demonstrated the relevance of large-scale grid infrastructures for the virtual screening by molecular docking. This also allowed evaluating the performances of the grid infrastructures and to identify specific issues raised by large-scale deployment.Comment: 14 pages, 2 figures, 2 tables, The Third International Life Science Grid Workshop, LSGrid 2006, Yokohama, Japan, 13-14 october 2006, to appear in the proceeding

    Grid-enabled high throughput in-silico screening against influenza A neuraminidase

    Get PDF
    PCSV, présenté par H.-C. Lee, à paraître dans les proceedingsEncouraged by the success of first EGEE biomedical data challenge against malaria[1], the second data challenge was kicked off in April, 2006, fighting against avian flu. In the paper, we demonstrated how to adopt a world-wide deployed Grid infrastructure to efficiently produce a large scale virtual screening to speed up the drug design process. The 6-weeks activity of molecular docking on the Grid has covered over 100 years of computing power required for discovering new drug for avian flu. Around 600 Gigabytes of output has also been produced and archived on the Grid for further biological analysis and test

    Neural hypernetwork approach for pulmonary embolism diagnosis

    Get PDF
    Background Hypernetworks are based on topological simplicial complexes and generalize the concept of two-body relation to many-body relation. Furthermore, Hypernetworks provide a significant generalization of network theory, enabling the integration of relational structure, logic and analytic dynamics. A pulmonary embolism is a blockage of the main artery of the lung or one of its branches, frequently fatal. Results Our study uses data on 28 diagnostic features of 1427 people considered to be at risk of pulmonary embolism enrolled in the Department of Internal and Subintensive Medicine of an Italian National Hospital “Ospedali Riuniti di Ancona”. Patients arrived in the department after a first screening executed by the emergency room. The resulting neural hypernetwork correctly recognized 94 % of those developing pulmonary embolism. This is better than previous results obtained with other methods (statistical selection of features, partial least squares regression, topological data analysis in a metric space). Conclusion In this work we successfully derived a new integrative approach for the analysis of partial and incomplete datasets that is based on Q-analysis with machine learning. The new approach, called Neural Hypernetwork, has been applied to a case study of pulmonary embolism diagnosis. The novelty of this method is that it does not use clinical parameters extracted by imaging analysis

    The status of PD-L1 and tumor-infiltrating immune cells predict resistance and poor prognosis in BRAFi-treated melanoma patients harboring mutant BRAFV600

    Get PDF
    In the present study, we have provided clinical evidence of the predictive and prognostic relevance of tumoral PD-L1 expression and density of immune cell infiltration in BRAFV600-mutated metastatic melanoma patients treated with BRAF inhibitor

    A Taxonomy of Causality-Based Biological Properties

    Get PDF
    We formally characterize a set of causality-based properties of metabolic networks. This set of properties aims at making precise several notions on the production of metabolites, which are familiar in the biologists' terminology. From a theoretical point of view, biochemical reactions are abstractly represented as causal implications and the produced metabolites as causal consequences of the implication representing the corresponding reaction. The fact that a reactant is produced is represented by means of the chain of reactions that have made it exist. Such representation abstracts away from quantities, stoichiometric and thermodynamic parameters and constitutes the basis for the characterization of our properties. Moreover, we propose an effective method for verifying our properties based on an abstract model of system dynamics. This consists of a new abstract semantics for the system seen as a concurrent network and expressed using the Chemical Ground Form calculus. We illustrate an application of this framework to a portion of a real metabolic pathway

    Multiscale Bone Remodelling with Spatial P Systems

    Get PDF
    Many biological phenomena are inherently multiscale, i.e. they are characterized by interactions involving different spatial and temporal scales simultaneously. Though several approaches have been proposed to provide "multilayer" models, only Complex Automata, derived from Cellular Automata, naturally embed spatial information and realize multiscaling with well-established inter-scale integration schemas. Spatial P systems, a variant of P systems in which a more geometric concept of space has been added, have several characteristics in common with Cellular Automata. We propose such a formalism as a basis to rephrase the Complex Automata multiscaling approach and, in this perspective, provide a 2-scale Spatial P system describing bone remodelling. The proposed model not only results to be highly faithful and expressive in a multiscale scenario, but also highlights the need of a deep and formal expressiveness study involving Complex Automata, Spatial P systems and other promising multiscale approaches, such as our shape-based one already resulted to be highly faithful.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005
    corecore