260 research outputs found

    DNA sequence evolution in fast evolving mitochondrial DNA nad1 exons in Geraniaceae and Plantaginaceae

    Get PDF
    Previously, nucleotide substitution rates in mitochondrial DNA of Geraniaceae and Plantaginaceae have been shown to be exceptionally high compared with other angiosperm mtDNA lineages. It has also been shown that mtDNA introns were lost in Geraniaceae and Plantaginaceae. In this study we compile 127 DNA sequences from two partial exons of the mtDNA nad1 gene in Geraniaceae, Plantaginaceae, and other angiosperm groups for which rate accelerations have not been reported, to assess the extent and nature of the nucleotide substitution rate acceleration. Whereas Litorella appears to have undergone a rate acceleration comparable to that observed in Plantago, the Geraniacean sister group representative Hypseocharis biloba has not, indicating that the rate change has occurred between the split of Hypseocharis and the rest of the Geraniaceae. Silent/non-silent rate ratios ¿ have decreased threefold in the "fast mtDNA" clades compared with other angiosperms, whereas their codon usage bias is around 20% lower. Absence of RNA editing in Geraniacean and Plantago mtDNA genes is confirmed. Possible causes for the exceptional substitution rate accelerations observed in these lineages are discussed in terms of the retroprocessing process or the possibility of affected mitochondrial DNA polymerase ¿ proofreading accuracy contro

    Beta diversity patterns reveal positive effects of farmland abandonment on moth communities

    Get PDF
    Farmland abandonment and the accompanying natural succession are largely perceived as unwanted amongst many European conservationists due to alleged negative effects on biodiversity levels. Here, we test this assumption by analysing alpha, beta and gamma diversity patterns of macro-moth communities in habitats on an ecological succession gradient, from extensively managed meadows to scrub-encroached and wooded sites. Macro-moths were light-trapped at 84 fixed circular sampling sites arranged in a semi-nested design within the National Park of Peneda-Gerês, NW-Portugal. In total, we sampled 22825 individuals belonging to 378 species. Alpha, beta and gamma diversity patterns suggest that farmland abandonment is likely to positively affect both overall macro-moth diversity and forest macro-moth diversity, and to negatively affect species diversity of non-forest macro-moth species. Our results also show that spatial habitat heterogeneity is important to maintain gamma diversity of macromoths, especially for rare non-forest species and habitat specialistsinfo:eu-repo/semantics/publishedVersio

    Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms

    Get PDF
    Rate variation in genes from all three genomes has been observed frequently in plant lineages with a parasitic and mycoheterotrophic mode of life. While the loss of photosynthetic ability leads to a relaxation of evolutionary constraints in genes involved in the photosynthetic apparatus, it remains to be determined how prevalent increased substitution rates are in nuclear DNA of non-photosynthetic angiosperms. In this study we infer rates of molecular evolution of 18S rDNA of all parasitic and mycoheterotorphic plant families (except Lauraceae and Polygalaceae) using relative rate tests. In several holoparasitic and mycoheterotrophic plant lineages extremely high substitution rates are observed compared to other photosynthetic angiosperms. The position and frequency of these substitutions have been identified to understand the mutation dynamics of 18S rRNA in achlorophyllous plants. Despite the presence of significantly elevated substitution rates, very few mutations occur in major functional and structural regions of the small ribosomal molecule, providing evidence that the efficiency of the translational apparatus in non-photosynthetic plants has not been affected

    Elevational species richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid moths

    Get PDF
    AIMS: We aim to document elevational richness patterns of geometrid moths in a globally replicated, multi-gradient setting, and to test general hypotheses on environmental and spatial effects (i.e. productivity, temperature, precipitation, area, mid-domain effect and human habitat disturbance) on these richness patterns. LOCATION: Twenty-six elevational gradients world-wide (latitudes 28° S to 51° N). METHODS: We compiled field datasets on elevational gradients for geometrid moths, a lepidopteran family, and documented richness patterns across each gradient while accounting for local undersampling of richness. Environmental and spatial predictor variables as well as habitat disturbance were used to test various hypotheses. Our analyses comprised two pathways: univariate correlations within gradients, and multivariate modelling on pooled data after correcting for overall variation in richness among different gradients. RESULTS: The majority of gradients showed midpeak patterns of richness, irrespective of climate and geographical location. The exclusion of human-affected sampling plots did not change these patterns. Support for univariate main drivers of richness was generally low, although there was idiosyncratic support for particular predictors on single gradients. Multivariate models, in agreement with univariate results, provided the strongest support for an effect of area-integrated productivity, or alternatively for an elevational area effect. Temperature and the mid-domain effect received support as weaker, modulating covariates, while precipitation-related variables had no explanatory potential. MAIN CONCLUSIONS: Despite the predicted decreasing diversity–temperature relationship in ectotherms, geometrid moths are similar to ants and salamanders as well as small mammals and ferns in having predominantly their highest diversity at mid-elevations. As in those comparative analyses, single or clear sets of drivers are elusive, but both productivity and area appear to be influential. More comparative elevational studies for various insect taxa are necessary for a more comprehensive understanding of elevational diversity and productivity

    Fertilizer and Soil Health in Africa The Role of Fertilizer in Building Soil Health to Sustain Farming and Address Climate Change

    Get PDF
    Summary Soil health is commonly defined as the ability to generate sufficient crop yields while maintaining the future productive capacity of soils and the ecosystem services soils regulate and deliver. However, less consensus exists on indicators to assess soil health and its changes over time and space, although soil organic carbon (SOC) is generally acknowledged as a key indicator. In the context of this paper, soil health status is equated with SOC status. Current SOC conditions are influenced by soil properties and climate. Under smallholder farming conditions, SOC is variable and affected by past crop and soil management practices, which are influenced by farmer typology. Although SOC content under cropland is a maximum of 60-70% of that under natural vegetation, there is substantial scope to increase it in smallholder farming conditions. A conceptual framework relating to fertilizer, crop productivity, and soil health is presented here. While fertilizer application commonly results in a substantial increase in crop yield at various scales, a key indicator of fertilizer use, agronomic efficiency (AE), is often observed to be lower than relatively easily achievable values under well-managed conditions, caused by a diversity of factors. Low AE values do not necessarily result in greater greenhouse gas (GHG) emissions because of the low fertilizer application rates in sub-Saharan Africa (SSA), though increases in GHG emissions are likely with increases in fertilizer use. Crop response to organic inputs is substantially lower although organic inputs increase SOC content, which usually results in greater AE values relative to sole application of fertilizer. Increases in crop productivity are associated with increases in SOC, though the relationship is weak and efforts besides fertilizer application itself are required. That said, N(PK) fertilizer has had a positive effect on SOC in most parts of the world except SSA, an observation corroborated by an analysis of past and ongoing long-term experiments, likely related to the low and erratic use of fertilizer in the region. While fertilizer use can be an entry point to increasing soil health, this will not likely happen on degraded soils where responses to fertilizer are limited. In such cases, investments to rehabilitate degraded soils should come first. Several approaches can be followed to determine best fertilizer recommendations, while recognizing nutrients needs by crops and soil-specific properties. Site-specificity commonly requires an assessment of the soil fertility status of a particular field, and analytical tools now allow for the development of locally relevant recommendations at scale with some early successes. While organic inputs do positively impact SOC, attractive options to increase organic inputs in smallholder farming systems are limited and mostly related to in-situ production, with an important emphasis on multi-purpose legumes. Climate adaptation is facilitated by healthy Fertilizer and Soil Health in Africa 2 soils and requires fertilizer to be combined with other crop, soil, and water management practices (Wortmann and Stewart, 2021). While low yields are linked to the ecological yield gap, whereby the potential productivity of crops is set by biological factors, input and output prices determine the economic yield gap, which is usually quite lower than the former because of unfavourable ratio of fertilizer prices to crop product prices. Even though profitability is a key driver of impact, many other factors affect the adoption of appropriate fertilizer and soil health recommendations, including farmers’ production objectives, resource endowment, land tenure, and access to markets. A main bottleneck in engaging smallholder farmers in soil health-restoring practices is the relatively large amount of time such practices take to deliver benefits that are visible to farmers. In the absence of incentive programs, farmers require short-term benefits, generated within their farming systems. Furthermore, associated advice on complementary practices to fertilizer use increases the complexity of information to be conveyed to farmers. Scaling models have moved toward the delivery of bundled services, often digitally enabled, to address challenges with communicating complex information and the necessary complementary crop and soil management practices. Targeted policy interventions can support the delivery of broad digitally enabled fertilizer management recommendations and the creation of conditions that enable smallholder farmers to implement these recommendations at scale. A number of recommendations have been generated from the scientific information, covered under the following headings: (1) key elements of a Fertilizer and Soil Health Action Plan; (2) development of quantitative indicators and targets of soil health; (3) addressing climate change requires choices; (4) incentivizing farmers; (5) soil health investments, which require localized actions (think global, act local); and (6) not only fertilizers, but also auxiliary interventions, as defined by the Integrated Soil Fertility Management (ISFM) approach. Action is needed today to reverse the downward spiral of low and inefficient fertilizer use, resulting in low yields and declining soil health

    Dispatch from the field: ecology of ground-web-building spiders with description of a new species (Araneae, Symphytognathidae).

    Get PDF
    Crassignathadanaugirangensis sp. n. (Araneae: Symphytognathidae) was discovered during a tropical ecology field course held at the Danau Girang Field Centre in Sabah, Malaysia. A taxonomic description and accompanying ecological study were completed as course activities. To assess the ecology of this species, which belongs to the ground-web-building spider community, three habitat types were surveyed: riparian forest, recently inundated riverine forest, and oil palm plantation. Crassignathadanaugirangensis sp. n. is the most abundant ground-web-building spider species in riparian forest; it is rare or absent from the recently inundated forest and was not found in a nearby oil palm plantation. The availability of this taxonomic description may help facilitate the accumulation of data about this species and the role of inundated riverine forest in shaping invertebrate communities

    Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multiâ gene analyses, and a functional model for the origin of monocots

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/1/ajb21178-sup-0009-AppendixS9.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/2/ajb21178-sup-0020-AppendixS20.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/3/ajb21178.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/4/ajb21178-sup-0019-AppendixS19.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/5/ajb21178-sup-0010-AppendixS10.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/6/ajb21178-sup-0002-AppendixS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/7/ajb21178-sup-0006-AppendixS6.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/8/ajb21178-sup-0012-AppendixS12.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/9/ajb21178-sup-0017-AppendixS17.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/10/ajb21178-sup-0007-AppendixS7.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/11/ajb21178-sup-0001-AppendixS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/12/ajb21178-sup-0003-AppendixS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/13/ajb21178-sup-0016-AppendixS16.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/14/ajb21178_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/15/ajb21178-sup-0008-AppendixS8.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/16/ajb21178-sup-0004-AppendixS4.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/17/ajb21178-sup-0018-AppendixS18.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/18/ajb21178-sup-0014-AppendixS14.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/19/ajb21178-sup-0011-AppendixS11.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/20/ajb21178-sup-0005-AppendixS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/21/ajb21178-sup-0015-AppendixS15.pd

    Reconsidering figures of merit for performance and stability of perovskite photovoltaics

    Get PDF
    The development of hybrid organic-inorganic halide perovskite solar cells (PSCs) that combine high performance and operational stability is vital for implementing this technology. Recently, reversible improvement and degradation of PSC efficiency have been reported under illumination-darkness cycling. Quantifying the performance and stability of cells exhibiting significant diurnal performance variations is challenging. We report the outdoor stability measurements of two types of devices showing either reversible photo-degradation or reversible efficiency improvement under sunlight. Instead of the initial (or stabilized) efficiency and T as the figures of merit for the performance and stability of such devices, we propose using the value of the energy output generated during the first day of exposure and the time needed to reach its 20% drop, respectively. The latter accounts for both the long-term irreversible degradation and the reversible diurnal efficiency variation and does not depend on the type of process prevailing in a given perovskite cell
    corecore