381 research outputs found

    Gravity and observer's body orientation influence the visual perception of human body postures

    Get PDF
    Since human behavior and perception have evolved within the Earth's gravitational field, humans possess an internal model of gravity. Although gravity is known to influence the visual perception of moving objects, the evidence is less clear concerning the visual perception of static objects. We investigated whether a visual judgment of the stability of human body postures (static postures of a human standing on a platform and tilted in the roll plane) may also be influenced by gravity and by the participant's orientation. Pictures of human body postures were presented in different orientations with respect to gravity and the participant's body. The participant's body was aligned to gravity (upright) or not (lying on one side). Participants performed stability judgments with respect to the platform, imagining that gravity operates in the direction indicated by the platform (that was or was not concordant with physical gravity). Such visual judgments were influenced by the picture's orientation with respect to physical gravity. When pictures were tilted by 90-with respect to physical gravity, the human postures that were tilted toward physical gravity (down) were perceived as more unstable than similar postures tilted away from physical gravity (up). Stability judgments were also influenced by the picture's orientation with respect to the participant's body. This indicates that gravity and the participant's body position may influence the visual perception of static objects

    Feeling numbness for someone else's finger

    Get PDF
    SummaryThe experience that our body and its parts belong to us and are not those of other people is a key aspect of the ‘self’ called body ownership [1]. In six experiments, we have investigated body ownership and its neurophysiology using a tactile illusion [2,3] that disrupts body ownership and tactile sensation robustly, repeatedly, and with no particular apparatus by inducing an illusory feeling of numbness for another person's finger — the ‘numbness illusion’ (NI). Our results show that the NI does not depend primarily on visual or motor signals, but on tactile inputs modulating activity in primary somatosensory cortex

    Pharmacokinetics of Intra-Arterial Melphalan in Patients withRecurrent or Progressive Retinoblastoma Treated on Spog-Rb-2011, A NationalPhase II Study of the Swiss Paediatric Oncology Group

    Get PDF
    Since the 1990s, intravenous (iv) chemotherapy has been the system-atic first-line treatment used in the management of retinoblastoma, to reduce tumour volumeand render it accessible to focal treatments as well as to avoid enucleation and/or radiother-apy. This approach has allowed globe preservation in the majority of group A-C tumors and in19-60% of group D cases. Relapse or tumour progression in this group D patients constitute amajor concern for globe salvage. Techniques of local administration of chemotherapy, such asSelective Ophtalmic Artery Chemotherapy (SOAC) administration offers an interesting alter-native. We report here pharmacokinetic analysis of melphalan administered by SOAC in eightpatients, their clinical response to SOAC and observed toxicities

    Inhaled nitric oxide therapy in neonates and children: reaching a European consensus

    Get PDF
    Inhaled nitric oxide (iNO) was first used in neonatal practice in 1992 and has subsequently been used extensively in the management of neonates and children with cardiorespiratory failure. This paper assesses evidence for the use of iNO in this population as presented to a consensus meeting jointly organised by the European Society of Paediatric and Neonatal Intensive Care, the European Society of Paediatric Research and the European Society of Neonatology. Consensus Guidelines on the Use of iNO in Neonates and Children were produced following discussion of the evidence at the consensus meeting

    High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT)

    Get PDF
    (abridged) A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT - the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope, a detector with a large field of view made of small movable CCDs located around a fixed central CCD, and an interferometric calibration system originating from metrology fibers located at the primary mirror. The proposed mission architecture relies on the use of two satellites operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations (alternative option uses deployable boom). The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits. The remaining time might be allocated to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys.Comment: Accepted for publication in Experimental Astronomy. The full member list of the NEAT proposal and the news about the project are available at http://neat.obs.ujf-grenoble.fr. The final publication is available at http://www.springerlink.co

    Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5)

    Get PDF
    Abstract Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) focuses on the integrated care of chronic diseases. Area 5 (Care Pathways) was initiated using chronic respiratory diseases as a model. The chronic respiratory disease action plan includes (1) AIRWAYS integrated care pathways (ICPs), (2) the joint initiative between the Reference site MACVIA-LR (Contre les MAladies Chroniques pour un VIeillissement Actif) and ARIA (Allergic Rhinitis and its Impact on Asthma), (3) Commitments for Action to the European Innovation Partnership on Active and Healthy Ageing and the AIRWAYS ICPs network. It is deployed in collaboration with the World Health Organization Global Alliance against Chronic Respiratory Diseases (GARD). The European Innovation Partnership on Active and Healthy Ageing has proposed a 5-step framework for developing an individual scaling up strategy: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualised and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing

    ARIA 2016: Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle

    Get PDF
    Abstract The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and populations. ARIA—disseminated and implemented in over 70 countries globally—is now focusing on the implementation of emerging technologies for individualized and predictive medicine. MASK [MACVIA (Contre les Maladies Chroniques pour un Vieillissement Actif)-ARIA Sentinel NetworK] uses mobile technology to develop care pathways for the management of rhinitis and asthma by a multi-disciplinary group and by patients themselves. An app (Android and iOS) is available in 20 countries and 15 languages. It uses a visual analogue scale to assess symptom control and work productivity as well as a clinical decision support system. It is associated with an inter-operable tablet for physicians and other health care professionals. The scaling up strategy uses the recommendations of the European Innovation Partnership on Active and Healthy Ageing. The aim of the novel ARIA approach is to provide an active and healthy life to rhinitis sufferers, whatever their age, sex or socio-economic status, in order to reduce health and social inequalities incurred by the disease

    The Reference Site Collaborative Network of the European Innovation Partnership on Active and Healthy Ageing

    Get PDF

    The Gene Ontology knowledgebase in 2023

    Get PDF
    The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project
    corecore