2,802 research outputs found

    Stability assessment of the (A)ATSR sea surface temperature climate dataset from the European Space Agency Climate Change Initiative

    Get PDF
    Sea surface temperature is a key component of the climate record, with multiple independent records giving confidence in observed changes. As part of the European Space Agencies (ESA) Climate Change Initiative (CCI) the satellite archives have been reprocessed with the aim of creating a new dataset that is independent of the in situ observations, and stable with no artificial drift (<0.1 K decade−1 globally) or step changes. We present a method to assess the satellite sea surface temperature (SST) record for step changes using the Penalized Maximal t Test (PMT) applied to aggregate time series. We demonstrated the application of the method using data from version EXP1.8 of the ESA SST CCI dataset averaged on a 7 km grid and in situ observations from moored buoys, drifting buoys and Argo floats. The CCI dataset was shown to be stable after ~1994, with minimal divergence (~0.01 K decade−1) between the CCI data and in situ observations. Two steps were identified due to the failure of a gyroscope on the ERS-2 satellite, and subsequent correction mechanisms applied. These had minimal impact on the stability due to having equal magnitudes but opposite signs. The statistical power and false alarm rate of the method were assessed

    Energy transfer in nonlinear network models of proteins

    Full text link
    We investigate how nonlinearity and topological disorder affect the energy relaxation of local kicks in coarse-grained network models of proteins. We find that nonlinearity promotes long-range, coherent transfer of substantial energy to specific, functional sites, while depressing transfer to generic locations. Remarkably, transfer can be mediated by the self-localization of discrete breathers at distant locations from the kick, acting as efficient energy-accumulating centers.Comment: 4 pages, 3 figure

    Compliance error compensation in robotic-based milling

    Get PDF
    The paper deals with the problem of compliance errors compensation in robotic-based milling. Contrary to previous works that assume that the forces/torques generated by the manufacturing process are constant, the interaction between the milling tool and the workpiece is modeled in details. It takes into account the tool geometry, the number of teeth, the feed rate, the spindle rotation speed and the properties of the material to be processed. Due to high level of the disturbing forces/torques, the developed compensation technique is based on the non-linear stiffness model that allows us to modify the target trajectory taking into account nonlinearities and to avoid the chattering effect. Illustrative example is presented that deals with robotic-based milling of aluminum alloy

    Study on the pulmonary delivery system of apigenin loaded albumin nanocarriers with antioxidant activity

    Get PDF
    Background: Respiratory diseases are mainly derived from acute and chronic inflammation of the alveoli and bronchi. The pathophysiological mechanisms of pulmonary inflammation mainly arise from oxidative damage that could ultimately lead to acute lung injury (ALI). Apigenin (Api) is a natural polyphenol with prominent antioxidant and anti-inflammatory properties in the lung. Inhalable formulations consist of nanoparticles (NPs) have several advantages over other administration routes therefore this study investigated the application of apigenin loaded bovine serum albumin nanoparticles (BSA-Api-NPs) for pulmonary delivery. Methods: Dry powder formulations of BSA-Api-NPs were prepared by spray drying and characterized by laser diffraction particle sizing, scanning electron microscopy, differential scanning calorimetry and powder X-ray diffraction. The influence of dispersibility enhancers(lactose monohydrate and L-leucine) on the in vitro aerosol deposition using a next generation impactor (NGI) was investigated in comparison to excipient-free formulation. The dissolution of Api was determined in simulated lung fluid by using Franz cell apparatus. The antioxidant activity was determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH˙) free radical scavenging assay. Results: The encapsulation efficiency and the drug loading was measured to be 82.61 ± 4.56% and 7.51 ± 0.415%. The optimized spray drying conditions were suitable to produce particles with low residual moisture content. The spray dried BSA-Api-NPs possessed good the aerodynamic properties due to small and wrinkled particles with low mass median aerodynamic diameter, high emitted dose and fine particle fraction. The aerodynamic properties was enhanced by leucine and decreased by lactose, however, the dissolution was reversely affected. The DPPH˙ assay confirmed that the antioxidant activity of encapsulated Api was preserved. Conclusion: This study provides evidence to support that albumin nanoparticles 49 are suitable carriers of Api and the use of traditional or novel excipients should be taken into consideration. The developed BSA-Api-NPs is a novel delivery system against lung injury with potential antioxidant activity

    Clinical translation of [18F]ICMT-11 for measuring chemotherapy-induced caspase 3/7 activation in breast and lung cancer

    Get PDF
    Background: Effective anticancer therapy is thought to involve induction of tumour cell death through apoptosis and/or necrosis. [18F]ICMT-11, an isatin sulfonamide caspase-3/7-specific radiotracer, has been developed for PET imaging and shown to have favourable dosimetry, safety, and biodistribution. We report the translation of [18F]ICMT-11 PET to measure chemotherapy-induced caspase-3/7 activation in breast and lung cancer patients receiving first-line therapy. Results: Breast tumour SUVmax of [18F]ICMT-11 was low at baseline and unchanged following therapy. Measurement of M30/M60 cytokeratin-18 cleavage products showed that therapy was predominantly not apoptosis in nature. While increases in caspase-3 staining on breast histology were seen, post-treatment caspase-3 positivity values were only approximately 1%; this low level of caspase-3 could have limited sensitive detection by [18F]ICMT-11-PET. Fourteen out of 15 breast cancer patients responded to first–line chemotherapy (complete or partial response); one patient had stable disease. Four patients showed increases in regions of high tumour [18F]ICMT-11 intensity on voxel-wise analysis of tumour data (classed as PADS); response was not exclusive to patients with this phenotype. In patients with lung cancer, multi-parametric [18F]ICMT-11 PET and MRI (diffusion-weighted- and dynamic contrast enhanced-MRI) showed that PET changes were concordant with cell death in the absence of significant perfusion changes. Conclusion: This study highlights the potential use of [18F]ICMT-11 PET as a promising candidate for non-invasive imaging of caspase3/7 activation, and the difficulties encountered in assessing early-treatment responses. We summarize that tumour response could occur in the absence of predominant chemotherapy-induced caspase-3/7 activation measured non-invasively across entire tumour lesions in patients with breast and lung cancer

    Effect of various dopant elements on primary graphite growth

    Get PDF
    Five spheroidal graphite cast irons were investigated, a usual ferritic grade and four pearlitic alloys containing Cu and doped with Sb, Sn and Ti. These alloys were remelted in a graphite crucible, leading to volatilization of the magnesium added for spheroidization and to carbon saturation of the liquid. The alloys were then cooled down and maintained at a temperature above the eutectic temperature. During this step, primary graphite could develop showing various features depending on the doping elements added. The largest effects were that of Ti which greatly reduces graphite nucleation and growth, and that of Sb which leads to rounded agglomerates instead of lamellar graphite. The samples have been investigated with secondary ion mass spectrometry to enlighten distribution of elements in primary graphite. SIMS analysis showed almost even distribution of elements, including Mg and Al (from the inoculant) in the ferritic grade, while uneven distribution was evident in all doped alloys. Investigations are going on to clarify if the uneven distribution is associated with structural defects in the graphite precipitates

    Ecofeminism in the 21st Century

    Get PDF
    This paper considers the influence of ecofeminism on policy concerning gender (in)equality and the environment during the past 20 years. It reviews the broad contours of the ecofeminist debate before focusing on the social construction interpretation of women's relationship with the environment. It will argue that there have been substantial policy shifts in Europe and the UK in both the environmental and equalities fields, and that this is in part a result of lobbying at a range of scales by groups informed by ecofeminist debates. Nevertheless, the paper cautions that these shifts are largely incremental and operate within existing structures, which inevitably limit their capacity to create change. As policy addresses some of the concerns highlighted by ecofeminism, academic discourse and grass roots activity have been moving on to address other issues, and the paper concludes with a brief consideration of contemporary trajectories of ecofeminism and campaigning on issues that link women's, feminist and environment concerns

    Quantum and classical criticality in a dimerized quantum antiferromagnet

    Get PDF
    A quantum critical point (QCP) is a singularity in the phase diagram arising due to quantum mechanical fluctuations. The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors, quantum magnets, and ultracold atomic condensates, have been related to the importance of the critical quantum and thermal fluctuations near such a point. However, direct and continuous control of these fluctuations has been difficult to realize, and complete thermodynamic and spectroscopic information is required to disentangle the effects of quantum and classical physics around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram, we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the unconventional longitudinal ("Higgs") mode of the ordered phase by damping it thermally. We demonstrate the development of two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum and thermal fluctuations can behave largely independently near a QCP.Comment: 6 pages, 4 figures. Original version, published version available from Nature Physics websit

    A coil-globule transition of a semiflexible polymer driven by the addition of spherical particles

    Full text link
    The phase behaviour of a single large semiflexible polymer immersed in a suspension of spherical particles is studied. All interactions are simple excluded volume interactions and the diameter of the spherical particles is an order of magnitude larger than the diameter of the polymer. The spherical particles induce a quite long ranged depletion attraction between the segments of the polymer and this induces a continuous coil-globule transition in the polymer. This behaviour gives an indication of the condensing effect of macromolecular crowding on DNA.Comment: 12 pages, 4 figure
    corecore