23 research outputs found

    Local Pig Breeds: Nutritional Requirements, Innovative Practices and Local Feeding Resources as Challenges in Project TREASURE

    Get PDF
    TREASURE is a research and innovation project of European Union’s Horizon 2020 programme which is devoted to traditional genetic resources in pig production with aim to improve their potentials for enhanced use. Studying and improving management of local pig breeds in their production systems is one of the challenges in which we address their performances and nutrition with special attention on locally available feeding resources and innovative practices aiming to improved welfare. For that purpose 15 experiments on 12 breeds were designed in the project, which are hereafter shortly presented. Their concepts and main objectives with some highlights on already available results are described

    Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip

    Get PDF
    Genetic characterization of local breeds is essential to preserve their genomic variability, to advance conservation policies and to contribute to their promotion and sustainability. Genomic diversity of twenty European local pig breeds and a small sample of Spanish wild pigs was assessed using high density SNP chips. A total of 992 DNA samples were analyzed with the GeneSeek Genomic Profiler (GGP) 70 K HD porcine genotyping chip. Genotype data was employed to compute genetic diversity, population differentiation and structure, genetic distances, linkage disequilibrium and effective population size. Our results point out several breeds, such as Turopolje, Apulo Calabrese, Casertana, Mora Romagnola and Lithuanian indigenous wattle, having the lowest genetic diversity, supported by low heterozygosity and very small effective population size, demonstrating the need of enhanced conservation strategies. Principal components analysis showed the clustering of the individuals of the same breed, with few breeds being clearly isolated from the rest. Several breeds were partially overlapped, suggesting genetic closeness, which was particularly marked in the case of Iberian and Alentejana breeds. Spanish wild boar was also narrowly related to other western populations, in agreement with recurrent admixture between wild and domestic animals. We also searched across the genome for loci under diversifying selection based on F-S(T) outlier tests. Candidate genes that may underlie differences in adaptation to specific environments and productive systems and phenotypic traits were detected in potentially selected genomic regions

    Whole-genome sequencing of European autochthonous and commercial pig breeds allows the detection of signatures of selection for adaptation of genetic resources to different breeding and production systems

    Get PDF
    Background Natural and artificial directional selection in cosmopolitan and autochthonous pig breeds and wild boars have shaped their genomes and resulted in a reservoir of animal genetic diversity. Signatures of selection are the result of these selection events that have contributed to the adaptation of breeds to different environments and production systems. In this study, we analysed the genome variability of 19 European autochthonous pig breeds (Alentejana, Bísara, Majorcan Black, Basque, Gascon, Apulo-Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano, Sarda, Krškopolje pig, Black Slavonian, Turopolje, Moravka, Swallow-Bellied Mangalitsa, Schwäbisch-Hällisches Schwein, Lithuanian indigenous wattle and Lithuanian White old type) from nine countries, three European commercial breeds (Italian Large White, Italian Landrace and Italian Duroc), and European wild boars, by mining whole-genome sequencing data obtained by using a DNA-pool sequencing approach. Signatures of selection were identified by using a single-breed approach with two statistics [within-breed pooled heterozygosity (HP) and fixation index (FST)] and group-based FST approaches, which compare groups of breeds defined according to external traits and use/specialization/type. Results We detected more than 22 million single nucleotide polymorphisms (SNPs) across the 23 compared populations and identified 359 chromosome regions showing signatures of selection. These regions harbour genes that are already known or new genes that are under selection and relevant for the domestication process in this species, and that affect several morphological and physiological traits (e.g. coat colours and patterns, body size, number of vertebrae and teats, ear size and conformation, reproductive traits, growth and fat deposition traits). Wild boar related signatures of selection were detected across all the genome of several autochthonous breeds, which suggests that crossbreeding (accidental or deliberate) occurred with wild boars. Conclusions Our findings provide a catalogue of genetic variants of many European pig populations and identify genome regions that can explain, at least in part, the phenotypic diversity of these genetic resources.info:eu-repo/semantics/publishedVersio

    Genome-wide detection of copy number variants in European autochthonous and commercial pig breeds by whole-genome sequencing of DNA pools identified breed-characterising copy number states

    Get PDF
    In this study, we identified copy number variants (CNVs) in 19 European autochthonous pig breeds and in two commercial breeds (Italian Large White and Italian Duroc) that represent important genetic resources for this species. The genome of 725 pigs was sequenced using a breed-specific DNA pooling approach (30–35 animals per pool) obtaining an average depth per pool of 429. This approach maximised CNV discovery as well as the related copy number states characterising, on average, the analysed breeds. By mining more than 17.5 billion reads, we identified a total of 9592 CNVs (~683 CNVs per breed) and 3710 CNV regions (CNVRs; 1.15% of the reference pig genome), with an average of 77 CNVRs per breed that were considered as private. A few CNVRs were analysed in more detail, together with other information derived from sequencing data. For example, the CNVR encompassing the KIT gene was associated with coat colour phenotypes in the analysed breeds, confirming the role of the multiple copies in determining breed-specific coat colours. The CNVR covering the MSRB3 gene was associated with ear size in most breeds. The CNVRs affecting the ELOVL6 and ZNF622 genes were private features observed in the Lithuanian Indigenous Wattle and in the Turopolje pig breeds respectively. Overall, the genome variability unravelled here can explain part of the genetic diversity among breeds and might contribute to explain their origin, history and adaptation to a variety of production system

    Genome-wide detection of copy number variants in European autochthonous and commercial pig breeds by whole-genome sequencing of DNA pools identified breed-characterising copy number states

    Get PDF
    In this study, we identified copy number variants (CNVs) in 19 European autochthonous pig breeds and in two commercial breeds (Italian Large White and Italian Duroc) that represent important genetic resources for this species. The genome of 725 pigs was sequenced using a breed-specific DNA pooling approach (30–35 animals per pool) obtaining an average depth per pool of 429. This approach maximised CNV discovery as well as the related copy number states characterising, on average, the analysed breeds. By mining more than 17.5 billion reads, we identified a total of 9592 CNVs (~683 CNVs per breed) and 3710 CNV regions (CNVRs; 1.15% of the reference pig genome), with an average of 77 CNVRs per breed that were considered as private. A few CNVRs were analysed in more detail, together with other information derived from sequencing data. For example, the CNVR encompassing the KIT gene was associated with coat colour phenotypes in the analysed breeds, confirming the role of the multiple copies in determining breed-specific coat colours. The CNVR covering the MSRB3 gene was associated with ear size in most breeds. The CNVRs affecting the ELOVL6 and ZNF622 genes were private features observed in the Lithuanian Indigenous Wattle and in the Turopolje pig breeds respectively. Overall, the genome variability unravelled here can explain part of the genetic diversity among breeds and might contribute to explain their origin, history and adaptation to a variety of production system

    Genome-wide detection of copy number variants in European autochthonous and commercial pig breeds by whole-genome sequencing of DNA pools identified breed-characterising copy number states

    Get PDF
    In this study, we identified copy number variants (CNVs) in 19 European autochthonous pig breeds and in two commercial breeds (Italian Large White and Italian Duroc) that represent important genetic resources for this species. The genome of 725 pigs was sequenced using a breed-specific DNA pooling approach (30–35 animals per pool) obtaining an average depth per pool of 429. This approach maximised CNV discovery as well as the related copy number states characterising, on average, the analysed breeds. By mining more than 17.5 billion reads, we identified a total of 9592 CNVs (~683 CNVs per breed) and 3710 CNV regions (CNVRs; 1.15% of the reference pig genome), with an average of 77 CNVRs per breed that were considered as private. A few CNVRs were analysed in more detail, together with other information derived from sequencing data. For example, the CNVR encompassing the KIT gene was associated with coat colour phenotypes in the analysed breeds, confirming the role of the multiple copies in determining breed-specific coat colours. The CNVR covering the MSRB3 gene was associated with ear size in most breeds. The CNVRs affecting the ELOVL6 and ZNF622 genes were private features observed in the Lithuanian Indigenous Wattle and in the Turopolje pig breeds respectively. Overall, the genome variability unravelled here can explain part of the genetic diversity among breeds and might contribute to explain their origin, history and adaptation to a variety of production system

    Describing variability in pig genes involved in coronavirus infections for a One Health perspective in conservation of animal genetic resources

    Get PDF
    Coronaviruses silently circulate in human and animal populations, causing mild to severe diseases. Therefore, livestock are important components of a ?One Health? perspective aimed to control these viral infections. However, at present there is no example that considers pig genetic resources in this context. In this study, we investigated the variability of four genes (ACE2, ANPEP and DPP4 encoding for host receptors of the viral spike proteins and TMPRSS2 encoding for a host proteinase) in 23 European (19 autochthonous and three commercial breeds and one wild boar population) and two Asian Sus scrofa populations. A total of 2229 variants were identifed in the four candidate genes: 26% of them were not previously described; 29 variants afected the protein sequence and might potentially interact with the infection mechanisms. The results coming from this work are a frst step towards a ?One Health? perspective that should consider conservation programs of pig genetic resources with twofold objectives: (i) genetic resources could be reservoirs of host gene variability useful to design selection programs to increase resistance to coronaviruses; (ii) the describedFE1B-06B2-126F | Jos? Pedro Pinto de Ara?joN/

    Quelles sont les relations génétiques entre des caractères mesurés sur des animaux purs ou croisés issus de Piétrain ?

    No full text
    In pig breeding schemes, the traits of interest are measured in the grandparent or parent populations on purebred animals. However, the progress in these pure breeds should be expressed in the crossbred offspring. It is generally expected that the genetic relationships between traits measured on purebred and crossbred animals are high for growth traits and body composition. The purpose of the study was to estimate the genetic correlations between performances recorded in pure and crossed animals on a large number of traits related to production, quality, welfare and health, i.e. growth rate, carcass composition, meat quality including boar taint, sex hormones, blood parameters, bodily injury and leg weakness. About 1,600 animals were included in the study, either purebred Piétrain or crossbred Piétrain x Large White. For the majority of production traits such as growth and carcass composition, genetic correlations between purebred and crossbred were close to 1 (between 0.7 and 1, with a standard error between 0.05 and 0.20). Some traits had lower correlation parameters such as the number of leukocytes (rg = 0.5 ± 0.30) or the number of injuries at the beginning of fattening (rg = -0.14 ± 0.40)

    Les anomalies congénitales héréditaires chez le porc

    No full text
    Les anomalies congénitales sont définies comme des défauts de structure ou de fonction présents à la naissance. Bien que la fréquence des anomalies congénitales soit relativement faible, leur impact en production porcine est significatif. Elles provoquent le plus souvent un mal-être des animaux et une dépréciation des carcasses à l’abattoir induisant des pertes économiques. Les anomalies congénitales peuvent être de nature diverse, mais les défauts les plus courants rencontrés chez le porcelet sont de type urogénital (les hernies inguinales et scrotales, la cryptorchidie et l’intersexualité). Ces défauts peuvent être dus à des problèmes nutritionnels, aux conditions d’environnement ou à la conduite de l’élevage, mais une part de leur déterminisme est très souvent génétique. Les développements récents des outils de génomique permettent désormais d’entreprendre, à grande échelle, des études d’association afin d’identifier les régions chromosomiques des gènes impliqués. L’identification des mutations causales est devenue une priorité afin de proposer de nouveaux schémas de sélection. L’objectif de cet article est de présenter une synthèse des connaissances génétiques sur les anomalies congénitales les plus fréquentes chez le porc et les stratégies mises en œuvre pour gérer ces défauts en sélection.Congenital diseases are defined as physical or functional defects, which are present at birth. Although the incidence of congenital disorders is quite low, it is a significant problem in the pig industry. These defects have a serious impact on animal welfare and induce economic losses due to carcass depreciation. Congenital diseases are various but the most common defects occurring in piglets are urogenital diseases (scrotal or inguinal hernias, cryptorchidism, and intersexuality). Defects can arise from nutritional, environmental, management causes, as well as hereditary. Recently the developed genomics tools enable large scale, genome wide association studies to identify chromosomal regions containing causal genes. Identification of causal mutations became a priority to propose new selection schemes. The aim of this article is to present an overview of genetic knowledge on the most frequent congenital diseases in pigs, and the strategies implemented to manage these defects in selection

    L’évaluation génomique dans un schéma de croisement terminal

    No full text
    In crossbreeding schemes, within-line selection of purebred lines mainly aims at improving performance of crossbred progeny in field conditions. The genetic correlation between purebred and crossbred performance is an important parameter to be assessed to ascertain that purebred performance is a good predictor of crossbred performance. With the availability of high density markers, feasibility of using crossbred information for evaluating purebred candidates can be reevaluated. This study implements and applies to real data a single-step terminal-cross model to estimate genetic parameters of several production traits in Pietrain and Pietrain x Large White pigs.Piglets were recorded for growth rate between 35 and 110 kg. Animals were genotyped using the 60K SNP chip. For each trait, purebred and crossbred performances were jointly analyzed. The purebred animals were evaluated through an animal model, whereas the additive genetic effect of a crossbred individual was decomposed into its purebred sire and dam allelic contribution effects. Piétrain genotypes were introduced in genetic evaluation in a single-step procedure. The same model but only accounting for pedigree information was compared to the genomic model in terms of breeding value accuracies obtained from the mixed model equations. Genetic correlation between purebreds and sire allelic contribution to crossbred performance was high (0.84 and 0.79 for the genomic and the pedigree model, respectively). Breeding value accuracies of the genotyped animals obtained with the genomic model outperformed the pedigree model
    corecore