1,988 research outputs found

    A multi-transition submillimeter water maser study of evolved stars - detection of a new line near 475 GHz

    Full text link
    Context: Maser emission from the H2O molecule probes the warm, inner circumstellar envelopes of oxygen-rich red giant and supergiant stars. Multi-maser transition studies can be used to put constraints on the density and temperature of the emission regions. Aims: A number of known H2O maser lines were observed toward the long period variables R Leo and W Hya and the red supergiant VY CMa. A search for a new, not yet detected line near 475 GHz was conducted toward these stars. Methods: The Atacama Pathfinder Experiment telescope was used for a multi-transition observational study of submillimeter H2O lines. Results: The 5_33-4_40 transition near 475 GHz was clearly detected toward VY CMa and W Hya. Many other H2O lines were detected toward all three target stars. Relative line intensity ratios and velocity widths were found to vary significantly from star to star. Conclusions: Maser action is observed in all but one line for which it was theoretically predicted. In contrast, one of the strongest maser lines, in R Leo by far the strongest, the 437 GHz 7_53-6_60 transition, is not predicted to be inverted. Some other qualitative predictions of the model calculations are at variance with our observations. Plausible reasons for this are discussed. Based on our findings for W Hya and VY CMa, we find evidence that the H2O masers in the AGB star W Hya arise from the regular circumstellar outflow, while shock excitation in a high velocity flow seems to be required to excite masers far from the red supergiant VY CMa.Comment: 9 pages, 4 figures, Astronomy and Astrophyics (in press

    New Measurements of the Radio Photosphere of Mira based on Data from the JVLA and ALMA

    Get PDF
    We present new measurements of the millimeter wavelength continuum emission from the long period variable Mira (oo Ceti) at frequencies of 46 GHz, 96 GHz, and 229 GHz (λ\lambda~7 mm, 3 mm, and 1 mm) based on observations obtained with the Jansky Very Large Array (JVLA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The measured millimeter flux densities are consistent with a radio photosphere model derived from previous observations, where flux density, Sνν1.86S_{\nu}\propto\nu^{1.86}. The stellar disk is resolved, and the measurements indicate a decrease in the size of the radio photosphere at higher frequencies, as expected if the opacity decreases at shorter wavelengths. The shape of the radio photosphere is found to be slightly elongated, with a flattening of ~10-20%. The data also reveal evidence for brightness non-uniformities on the surface of Mira at radio wavelengths. Mira's hot companion, Mira B was detected at all three observed wavelengths, and we measure a radius for its radio-emitting surface of 2.0×1013\approx2.0\times10^{13} cm. The data presented here highlight the power of the JVLA and ALMA for the study of the atmospheres of evolved stars.Comment: Accepted to ApJ; 27 pages, 7 figure

    Outflow 20--2000 AU from a High-Mass Protostar in W51-IRS2

    Full text link
    We present the results of the first high angular resolution observations of SiO maser emission towards the star forming region W51-IRS2 made with the Very Large Array (VLA) and Very Long Baseline Array (VLBA). Our images of the water maser emission in W51-IRS2 reveal two maser complexes bracketing the SiO maser source. One of these water maser complexes appears to trace a bow shock whose opening angle is consistent with the opening angle observed in the distribution of SiO maser emission. A comparison of our water maser image with an image constructed from data acquired 19 years earlier clearly shows the persistence and motion of this bow shock. The proper motions correspond to an outflow velocity of 80 km/s, which is consistent with the data of 19 years ago (that spanned 2 years). We have discovered a two-armed linear structure in the SiO maser emission on scales of ~25 AU, and we find a velocity gradient on the order of 0.1 km/s/AU along the arms. We propose that the SiO maser source traces the limbs of an accelerating bipolar outflow close to an obscured protostar. We estimate that the outflow makes an angle of <20 degrees with respect to the plane of the sky. Our measurement of the acceleration is consistent with a reported drift in the line-of-sight velocity of the W51 SiO maser source.Comment: 19 pages, 5 figures (including 3 color). Accepted for publication in ApJ (April 1, 2001 issue

    A 1.3 cm wavelength radio flare from a deeply embedded source in the Orion BN/KL region

    Full text link
    Aims: Our aim was to measure and characterize the short-wavelength radio emission from young stellar objects (YSOs) in the Orion Nebula Cluster and the BN/KL star-forming region. Methods: We used the NRAO Very Large Array at a wavelength of 1.3 cm and we studied archival X-ray, infrared, and radio data. Results: During our observation, a strong outburst (flux increasing >10 fold) occurred in one of the 16 sources detected at a wavelength of 1.3cm, while the others remained (nearly) constant. This source does not have an infrared counterpart, but has subsequently been observed to flare in X-rays. Curiously, a very weak variable double radio source was found at other epochs near this position, one of whose components is coincident with it. A very high extinction derived from modeling the X-ray emission and the absence of an infrared counterpart both suggest that this source is very deeply embedded.Comment: 7 pages, 5 figures, accepted for publication in A&

    Initial phases of massive star formation in high infrared extinction clouds. II. Infall and onset of star formation

    Full text link
    The onset of massive star formation is not well understood because of observational and theoretical difficulties. To find the dense and cold clumps where massive star formation can take place, we compiled a sample of high infrared extinction clouds, which were observed previously by us in the 1.2 mm continuum emission and ammonia. We try to understand the star-formation stages of the clumps in these high extinction clouds by studying the infall and outflow properties, the presence of a young stellar object (YSO), and the level of the CO depletion through a molecular line survey with the IRAM 30m and APEX 12m telescopes. Moreover, we want to know if the cloud morphology, quantified through the column density contrast between the clump and the clouds, has an impact on the star formation occurring inside it. We find that the HCO+(1-0) line is the most sensitive for detecting infalling motions. SiO, an outflow tracer, was mostly detected toward sources with infall, indicating that infall is accompanied by collimated outflows. The presence of YSOs within a clump depends mostly on its column density; no signs of YSOs were found below 4E22 cm-2. Star formation is on the verge of beginning in clouds that have a low column density contrast; infall is not yet present in the majority of the clumps. The first signs of ongoing star formation are broadly observed in clouds where the column density contrast between the clump and the cloud is higher than two; most clumps show infall and outflow. Finally, the most evolved clumps are in clouds that have a column density contrast higher than three; almost all clumps have a YSO, and in many clumps, the infall has already halted. Hence, the cloud morphology, based on the column density contrast between the cloud and the clumps, seems to have a direct connection with the evolutionary stage of the objects forming inside

    A Parallax-based Distance Estimator for Spiral Arm Sources

    Full text link
    The spiral arms of the Milky Way are being accurately located for the first time via trigonometric parallaxes of massive star forming regions with the BeSSeL Survey, using the Very Long Baseline Array and the European VLBI Network, and with the Japanese VERA project. Here we describe a computer program that leverages these results to significantly improve the accuracy and reliability of distance estimates to other sources that are known to follow spiral structure. Using a Bayesian approach, sources are assigned to arms based on their (l,b,v) coordinates with respect to arm signatures seen in CO and HI surveys. A source's kinematic distance, displacement from the plane, and proximity to individual parallax sources are also considered in generating a full distance probability density function. Using this program to estimate distances to large numbers of star forming regions, we generate a realistic visualization of the Milky Way's spiral structure as seen from the northern hemisphere.Comment: 25 pages with 16 figures; to appear in Ap
    corecore