180 research outputs found

    Epilepsy With Auditory Features: From Etiology to Treatment

    Get PDF
    Epilepsy with auditory features (EAF) is a focal epilepsy belonging to the focal epileptic syndromes with onset at variable age according to the new ILAE Classification. It is characterized by seizures with auditory aura or receptive aphasia suggesting a lateral temporal lobe involvement of the epileptic discharge. Etiological factors underlying EAF are largely unknown. In the familial cases with an autosomal dominant pattern of inheritance several genes have been involved, among which the first discovered, LGI1, was thought to be predominant. However, increasing evidence now points to a multifactorial etiology, as familial and sporadic EAF share a virtually identical electro-clinical characterization and only a few have a documented genetic etiology. Patients with EAF usually have an unremarkable neurological examination and a good response to antiseizure medications. However, it must be underscored that total remission might be lower than expected and that treatment withdrawal might lead to relapses. Thus, a proper understanding of this condition is in order for better patient treatment and counseling. Further studies are still required to further characterize the many facets of EAF

    Autoimmune polyendocrine syndromes in the pediatric age

    Get PDF
    Autoimmune polyendocrine syndromes (APSs) encompass a heterogeneous group of rare diseases characterized by autoimmune activity against two or more endocrine or non-endocrine organs. Three types of APSs are reported, including both monogenic and multifactorial, heterogeneous disorders. The aim of this manuscript is to present the main clinical and epidemiological characteristics of APS-1, APS-2, and IPEX syndrome in the pediatric age, describing the mechanisms of autoimmunity and the currently available treatments for these rare conditions

    Radiomics in the characterization of lipid-poor adrenal adenomas at unenhanced CT: time to look beyond usual density metrics

    Get PDF
    Objectives: In this study, we developed a radiomic signature for the classification of benign lipid-poor adenomas, which may potentially help clinicians limit the number of unnecessary investigations in clinical practice. Indeterminate adrenal lesions of benign and malignant nature may exhibit different values of key radiomics features. Methods: Patients who had available histopathology reports and a non-contrast-enhanced CT scan were included in the study. Radiomics feature extraction was done after the adrenal lesions were contoured. The primary feature selection and prediction performance scores were calculated using the least absolute shrinkage and selection operator (LASSO). To eliminate redundancy, the best-performing features were further examined using the Pearson correlation coefficient, and new predictive models were created. Results: This investigation covered 50 lesions in 48 patients. After LASSO-based radiomics feature selection, the test dataset’s 30 iterations of logistic regression models produced an average performance of 0.72. The model with the best performance, made up of 13 radiomics features, had an AUC of 0.99 in the training phase and 1.00 in the test phase. The number of features was lowered to 5 after performing Pearson’s correlation to prevent overfitting. The final radiomic signature trained a number of machine learning classifiers, with an average AUC of 0.93. Conclusions: Including more radiomics features in the identification of adenomas may improve the accuracy of NECT and reduce the need for additional imaging procedures and clinical workup, according to this and other recent radiomics studies that have clear points of contact with current clinical practice. Clinical relevance statement: The study developed a radiomic signature using unenhanced CT scans for classifying lipid-poor adenomas, potentially reducing unnecessary investigations that scored a final accuracy of 93%. Key Points: • Radiomics has potential for differentiating lipid-poor adenomas and avoiding unnecessary further investigations. • Quadratic mean, strength, maximum 3D diameter, volume density, and area density are promising predictors for adenomas. • Radiomics models reach high performance with average AUC of 0.95 in the training phase and 0.72 in the test phase

    The potential role of MR based radiomic biomarkers in the characterization of focal testicular lesions

    Get PDF
    How to differentiate with MRI-based techniques testicular germ (TGCTs) and testicular non-germ cell tumors (TNGCTs) is still under debate and Radiomics may be the turning key. Our purpose is to investigate the performance of MRI-based Radiomics signatures for the preoperative prediction of testicular neoplasm histology. The aim is twofold: (i), differentiating TGCTs and TNGCTs status and (ii) differentiating seminomas (SGCTs) from non-seminomatous (NSGCTs). Forty-two patients with pathology-proven testicular neoplasms and referred for pre-treatment MRI, were retrospectively enrolled. Thirty-two out of 44 lesions were TGCTs. Twelve out of 44 were TNGCTs or other histologies. Two radiologists segmented the volume of interest on T2-weighted images. Approximately 500 imaging features were extracted. Least Absolute Shrinkage and Selection Operator (LASSO) was applied as method for variable selection. A linear model and a linear support vector machine (SVM) were trained with selected features to assess discrimination scores for the two endpoints. LASSO identified 3 features that were employed to build fivefold validated linear discriminant and linear SVM classifiers for the TGCT-TNGCT endpoint giving an overall accuracy of 89%. Four features were employed to build another SVM for the SGCT-SNGCT endpoint with an overall accuracy of 86%. The data obtained proved that T2-weighted-based Radiomics is a promising tool in the diagnostic workup of testicular neoplasms by discriminating germ cell from non-gem cell tumors, and seminomas from non-seminomas

    Sexual developmental disorders in pediatrics

    Get PDF
    Disorders of sex development (DSD) are a heterogeneous group of pathologies that result in an alteration in sex determination or differentiation. DSD are estimated to affect 1: 4,500 newborns and according to the 2006 Chicago Consensus classification, DSD can be divided into three categories: those with a 46 XX karyotype, those with a 46 XY karyotype and those relating to sex chromosomes. It is crucial to correctly identify the pathology already in the first days of life to direct the patient and his family to the best path of care. For this reason, the role of the pediatrician is fundamental in the correct identification of the clinical picture and in supporting the family during the long process that involves the management of these patients. To make a diagnosis, it is necessary to follow a path led by a multidisciplinary team that includes several steps such as the execution of the genetic analysis, the evaluation with diagnostic imaging methods and laboratory evaluations. The therapeutic management, on the other hand, is still very complex even if in recent years we have moved from an attitude of early gender reassignment to an approach of watchful waiting to let the patient choose when she/he is mature enough to do so, which gender she/he feels to belong. It should not be forgotten that throughout this process the pediatrician must be both supportive and clinically active in the management of the child and his family

    In vitro irradiation system for radiobiological experiments

    Get PDF
    Background: Although two-dimensional (2-D) monolayer cell cultures provide important information on basic tumor biology and radiobiology, they are not representative of the complexity of three-dimensional (3-D) solid tumors. In particular, new models reproducing clinical conditions as closely as possible are needed for radiobiological studies to provide information that can be translated from bench to bedside. Methods: We developed a novel system for the irradiation, under sterile conditions, of 3-D tumor spheroids, the in vitro model considered as a bridge between the complex architectural organization of in vivo tumors and the very simple one of in vitro monolayer cell cultures. The system exploits the same equipment as that used for patient treatments, without the need for dedicated and highly expensive instruments. To mimic the passage of radiation beams through human tissues before they reach the target tumor mass, 96-multiwell plates containing the multicellular tumor spheroids (MCTS) are inserted into a custom-built phantom made of plexiglass, the material most similar to water, the main component of human tissue. Results: The system was used to irradiate CAEP- and A549-derived MCTS, pre-treated or not with 20 \u3bcM cisplatin, with a dose of 20 Gy delivered in one session. We also tested the same treatment schemes on monolayer CAEP and A549 cells. Our preliminary results indicated a significant increment in radiotoxicity 20 days after the end of irradiation in the CAEP spheroids pre-treated with cisplatin compared to those treated with cisplatin or irradiation alone. Conversely, the effect of the radio- chemotherapy combination in A549-derived MCTS was similar to that induced by cisplatin or irradiation alone. Finally, the 20 Gy dose did not affect cell survival in monolayer CAEP and A549 cells, whereas cisplatin or cisplatin plus radiation caused 100% cell death, regardless of the type of cell line used. Conclusions: We set up a system for the irradiation, under sterile conditions, of tumor cells grown in 3-D which allows for the use of the same dose intensities and schedules utilized in clinical practice. This irradiation system, coupled with 3-D cell cultures, has the potential to generate information that could be used to individually tailor radiotherap

    COVID-19 affects serum brain-derived neurotrophic factor and neurofilament light chain in aged men. Implications for morbidity and mortality

    Get PDF
    Background and Methods: Severe COVID-19 is known to induce neurological damage (NeuroCOVID), mostly in aged individuals, by affecting brain-derived neurotrophic factor (BDNF), matrix metalloproteinases (MMP) 2 and 9 and the neurofilament light chain (NFL) pathways. Thus, the aim of this pilot study was to investigate BDNF, MMP-2, MMP-9, and NFL in the serum of aged men affected by COVID-19 at the beginning of the hospitalization period and characterized by different outcomes, i.e., attending a hospital ward or an intensive care unit (ICU) or with a fatal outcome. As a control group, we used a novelty of the study, unexposed age-matched men. We also correlated these findings with the routine blood parameters of the recruited individuals. Results: We found in COVID-19 individuals with severe or lethal outcomes disrupted serum BDNF, NFL, and MMP-2 presence and gross changes in ALT, GGT, LDH, IL-6, ferritin, and CRP. We also confirmed and extended previous data, using ROC analyses, showing that the ratio MMPs (2 and 9) versus BDNF and NFL might be a useful tool to predict a fatal COVID-19 outcome. Conclusions: Serum BDNF and NFL and/or their ratios with MMP-2 and MMP-9 could represent early predictors of NeuroCOVID in aged men

    Gene Expression Profiling of Pancreas Neuroendocrine Tumors with Different Ki67-Based Grades.

    Get PDF
    Pancreatic neuroendocrine tumors (PanNETs) display variable aggressive behavior. A major predictor of survival is tumor grade based on the Ki67 proliferation index. As information on transcriptomic profiles of PanNETs with different tumor grades is limited, we investigated 29 PanNETs (17 G1, 7 G2, 5 G3) for their expression profiles, mutations in 16 PanNET relevant genes and LINE-1 DNA methylation profiles. A total of 3050 genes were differentially expressed between tumors with different grades (p < 0.05): 1279 in G3 vs. G2; 2757 in G3 vs. G1; and 203 in G2 vs. G1. Mutational analysis showed 57 alterations in 11 genes, the most frequent being MEN1 (18/29), DAXX (7/29), ATRX (6/29) and MUTYH (5/29). The presence and type of mutations did not correlate with the specific expression profiles associated with different grades. LINE-1 showed significantly lower methylation in G2/G3 versus G1 tumors (p = 0.007). The expression profiles of matched primaries and metastasis (nodal, hepatic and colorectal wall) of three cases confirmed the role of Ki67 in defining specific expression profiles, which clustered according to tumor grades, independently from anatomic location or patient of origin. Such data call for future exploration of the role of Ki67 in tumor progression, given its involvement in chromosomal stability
    corecore