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Introduction

Disorders of sex development (DSD) are a heteroge-
neous group of pathologies that leads to an alteration in the 
determination of sex and its respective differentiation with 
atypical development of the internal and external genitalia 
(1). This clinical condition may be due to genetic and/
or hormonal alterations that lead to anomalies during the 
sex determination process (2). However, it is necessary to 
differentiate sexual development disorders from ambiguous 
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genitalia which instead represent a phenotypic alteration of 
the urogenital system (3). In numerical terms, it is estimated 
that the incidence of DSD is about 1 per 4500 live births (4). 
The main aim of this report is to propose the pediatrician as 
a key figure in the diagnostic and therapeutic path of patients 
with DSD. For this reason, it is essential that the pediatrician 
is fully aware of the latest scientific evidence in the DSD 
field disorders in order to propose the most appropriate path 
for the individual patient (Fig. 1).

Embryology

Before talking about the embryological processes that 
define sexual development, it is necessary to explain the 
genetic or chromosomal sex that develops at the moment of 
fertilization, determining the growth of a XX or XY gamete 
(1,5). Subsequently, the genetic sex defined by sexual dif-
ferentiation will determine the development of the gonad, 
between the 7th and 13th week of fetal life, defining the 
gonadal sex (6). 

The gonadal sex corresponds to the primary sexual 
characteristics that will determine, both during the prenatal 
and postnatal life, the development of the secondary sexual 
characteristics that usually occur during puberty. The set of 
anatomical, functional and behavioral aspects, determined 
by the primary and secondary sexual characteristics, define 
the phenotypic sex (7). The formation of the gonads begins 
from the 5th week of gestational life. Indeed, the gonadal 
crests originate from the lateral mesoderm also called 
splanchnopleure which represents the sketches of the gonads 
(8). Until the beginning of the 6th week of development, the 
testicles and ovaries are morphologically indistinguishable, 
but starting from the 7th week the differentiation of the 
testicles begins (9).

Around this week of gestation, the seminiferous cords 
are formed which will host the gonocytes or prospermato-
gonia, that will be surrounded by the Sertoli cells (10). The 
seminiferous tubules will branch outreaching the hilum 
of the testis and giving rise to the rete testis. At the same 
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time, the interstitial cells of Leydig are arranged between 
the seminiferous tubules (11). Around the 20th week of 
pregnancy, the testes migrate from their intra-abdominal 
position to the scrotum passing through the inguinal canals 
(12). The ovaries, on the other hand, are not identifiable 
until the 10th week of gestation, the germ cells differentiate 
into oogonia within the secondary sexual cords. Oogonia 
proliferate intensely around the 5th month of pregnancy 
with a production of about 5-7 million gametes. Once the 
proliferative phase is over, the ovogonium degenerates or 
undertakes the meiotic division (13). The cells that started 
the first meiotic division are called primary oocytes, when 
the oocytes reach the diplotene stage they are surrounded 
by the follicular cells. In this way, between 5 and 9 months 
of embryonic development, the primordial follicles develop 
with about 4-5 follicular cells that enclose a primary oocyte 
in diplotene. Usually, before birth, the ovaries descend from 
the abdominal wall to the pelvis. At birth there are about 1 
million primordial follicles, considering both two ovaries, 
each containing a primary oocyte still at the diplotene stage 
(14). 

During the 4th week of gestation the mesonephric or 
Wolff duct develops, at the 6th week the paramesonephric 
or Müller duct develops outside the Wolff duct, both ducts 
open into the cloaca (15). Starting from week 8th, Leydig 
cells produce testosterone and dihydrotestosterone (DHT) 
which will determine the differentiation of Wolff’s duct 
into the epididymis, seminal vesicles and vas deferens; the 
Sertoli cells instead produce the anti-Müllerian hormone 

or AMH which inhibits the development of Müller’s ducts 
(16,17).  It should be remembered that the testicle begins to 
produce testosterone from the 8th week of gestation with a 
progressive increase up to about the 14th week of gestation, 
the testosterone is then partially converted into DHT by the 
5-alpha-reductase enzyme (18). The DHT is required for the 
fusion of the urethral and labioscrotal folds, elongation of 
the genital tubercle, and regression of the urogenital sinus 
(19,20).  In females, the fusion of the two Müller’s ducts 
will give life to the fallopian tubes, uterus and the upper 
portion of the vagina (15).

At the end of the 5th week, the genital tubercle is formed 
which, thanks to hormonal production, will form the penis 
in males. In females, the genital tubercle increases, but in a 
limited way compared to the male, turning into the clitoris 
(21,22). Similarly, the genital swellings formed at the end 
of the 5th week will give rise to the scrotum in the male and 
the labia majora in the females (19).

Genetics

The formation and growth of the undifferentiated gonad 
depend on the expression of a group of genes such as the ste-
roidogenic factor 1 (Sf1), GATA binding protein 4 (GATA4), 
Wilms tumor 1 (Wt1), chromobox homolog2 (CBX2), LIM 
homeobox factor 9 (LHX9), sine oculis-related homeobox 
1/4 (SIX 1/4) and empty spiracles homeobox2 (EMX2) 
(5,23–29). These genes favor the expression of certain 
proteins necessary for the development of the gonad. The 

Fig. 1. The figure shows the diagnostic procedure to follow for the newborn with sexual developmental disorders (DSD). CAH (congenital 
adrenal hyperplasia): PAIS (partial androgen insensitivity syndrome): CAIS (partial androgen insensitivity syndrome).
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differentiation of the gonad in the male sense occurs thanks 
to the presence of the Y chromosome which encodes the SRY 
gene (30). The latter in association with SF1 and Sry-box 
transcription factor 9 (SOX9) stabilizes the environment 
allowing the development of Leydig cells and male germ 
cells (30). The fibroblastic growth factor (FGF-9) determines 
the production of SOX9 which antagonizes the production 
of Wnt family member 4 (WNT4) (31,32).

As for the female gonad, the growth factor determining 
its development is WNT4, this promotes the production of 
follistatin which inhibits activin B and therefore the correct 
formation of the vascular network of the testicle (33,34). 
Another factor that appears to be involved is Forkhead box 
ligand 2 (FOXL2) which is fundamental in the differentiation 
and maintenance of ovarian differentiation. Furthermore, 
WNT4 inhibits SOX9 production in pre-granulosa cells (35). 
In conclusion, it would seem that the two factors determining 
the transformation of the undifferentiated gonad into testis or 
ovary are FGF-9 and WNT4 as one antagonizes the function 
of the other (32,36).

Classification of disorders of sexual development

According to the Chicago Consensus of 2006, the term 
DSD refers to all those congenital conditions in which the 
chromosomal, gonadal, or anatomical sex is not in confor-
mity with the usual processes of embryonic development of 
the gonads and/or genitals (37). This classification allows to 
divide the DSD into three categories, as shown in table 1: 
– DSD with 46, XX karyotype
– DSD with 46, XY karyotype 
– DSD related to sex chromosomes

DSD with 46, XX karyotype. The 46,XX DSD cause virili-
zation of the female fetus. The final common pathway of all 
46,XX DSD is an excess of dihydrotestosterone (DHT) in the 

genital tissue during the critical period of sexual differentia-
tion (38). The most common form of DSD belonging to this 
group is congenital adrenal hyperplasia (CAH) (39). This 
pathology occurs due to the deficiency of 21-hydroxylase, 
related to the deficit of the CYP21A2 gene, which is the most 
common form of congenital adrenal hyperplasia (CAH) (40). 
Two subtypes are recognized: the simple virilizing form or 
the form with salt loss; it has a prevalence of about 1 case in 
14:000 and it clinically manifests already at birth (40–43).  

Females have ambiguous genitalia characterized by: cli-
toromegaly, labia majora partially fused with wrinkles, and 
common urogenital sinus (22,44). The degree of virilization 
can range from an almost masculine appearance to minimal 
clitoromegaly, the uterus is normal and the developmental 
abnormalities of the vagina are variable (3,40).

The salt-losing forms of CAH involve dehydration and 
hypotension in the first two to three weeks of life due to 
aldosterone deficiency (43,45). The patients may develop 
growth retardation, hyponatremia, hyperkalemia, acidosis 
and hypoglycemia (40). Hyperandrogenism can manifest 
itself in pediatric age with accelerated growth and skeletal 
maturation, advanced bone age, and premature puberty. In 
adulthood, hyperandrogenism can manifest with acne, hir-
sutism, menstrual problems, infertility, metabolic syndrome 
and obesity (39,43).

Non-classical 21-hydroxylase deficiency is more com-
mon than classical 21-hydroxylase deficiency. The incidence 
varies from 1/1000 to 1/2000 live births. Non-classical 
21-hydroxylase deficiency causes a less severe form of the 
disease as there is residual activity of the enzyme from 20% 
to 50% of normal. In the classic form of the deficit, however, 
the residual activity fluctuates between 0 and 5% of the 
total (46,47). The loss of salts is absent because the levels 
of aldosterone and cortisol are normal; however, adrenal 
androgen levels are elevated, resulting in slight excess of 
androgens in childhood or adulthood (39).

DSD with 46 XY karyotype [16,37,38,46,52]

Disorders of gonadal deve-
lopment

Complete gonadal dysgene-
sis (Swyer syndrome)
Partial gonadal dysgenesis
Ovotesticular
Testicular regression

Disorders in androgen 
synthesis

Androgen biosynthesis 
defect

Disorders in androgen 
action

Androgen insensibility 
(CAIS)

Disorders of AMH or 
AMH receptor

Persistent Mullerian duct 
syndrome (PMDS)

Unclassified disorders

Severe hypospadias
Epispadias
Cloacal extrophy

DSD with 46 XX karyotype   [35,37,39,46,48,93,132]

Disorders of gonadal development

Gonadal dysgenesis 
Ovotesticular
Primary ovarian insufficiency

Disorders of androgen excess

Congenital adrenal hyperplasia (CAH)
Aromatase deficiency

Unclassified disorders

MRKH I and II syndrome
Cloacal extrophy
Vaginal atresia

DSD related to sex chromosomes  [37,38,68,74,75,132,160]

45, X

Turner syndrome and variants

47, XXY

Klinefelter syndrome and variants

45 X/ 46 XY and 46 XX/ 46 XY
Chimerism
Mixed gonadal dysgenesis

Table 1. The table shows the classification of sexual developmental disorders (DSD) according to the Chicago Consensus of 2006.
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Other forms of DSD belonging to this group include 
11-beta hydroxylase deficiency, 3-beta-hydroxysteroid 
dehydrogenase deficiency, P450 oxidoreductase deficiency, 
and aromatase deficiency due to mutations in CYP11B1, 
HSD3B2, POR, and CYP19A1 (1). All these pathologies 
involve an increase in androgens with more or less severe 
forms of virilization. Another clinical condition belonging to 
this family is ovotesticular karyotype 46,XX characterized, 
from the histological point of view, by the presence of both 
testicular and ovarian tissue; the estimated prevalence is 
approximately 1:20.000 births (48,49).

The diagnosis is often made in the neonatal period due to 
the presence of anomalies of the genitals, but some patients 
have anomalies of pubertal development. Clinical symptoms 
include abdominal pain, gynecomastia, inguinal hernias, pre-
sence of an inguinoscrotal mass, cryptorchidism, or periodic 
amenorrhea and hematuria, depending on the sex assigned 
(28). Most patients have female internal genitalia such as the 
uterus, hemi-uterus, or rudimentary uterus. The development 
of the external genitalia varies from apparently female ge-
nitalia to male genitalia with curved penis and hypospadias 
(50). Rarely, patients have a normal or near-normal penis and 
ovotestis, gonads containing ovarian and testicular elements, 
bilaterally descended (49). The appearance of the gonads is 
variable. Infertility is common in males, while females are 
of potential fertility (35).

DSD with 46,XY karyotype. This group of DSD includes 
various groups of pathologies such as alterations in gonadal 
development, alterations in androgen synthesis, alterations 
in androgen functionality and the persistence of the Müller 
ducts syndrome (4). One of the most common pathologies 
belonging to this group is complete Androgen Insensitivity 
Syndrome (CAIS) or Morris Syndrome (51). This is a form 
of androgen insensitivity syndrome in individuals who have 
normal, but undescended testes, and androgen levels that do 
not match normal for age (52). The incidence is estimated 
between 1/20,000 and 1/99,000 live birth males (53). At 
birth, CAIS can be characterized by an inguinal hernia or 
the presence of labial protuberances, which contain the 
testicles (54). A typical sign is primary amenorrhea during 
adolescence at the same time breast development is normal, 
even if axillary and pubic hair is absent or sparse (55). The 
external female genitalia is often normal, while the internal 
ones are absent (56). The disease is due to mutations in the 
androgen receptor (AR), which is located on the short arm 
of the X chromosome (Xq11-12) (35). The CAIS variant is 
associated with a mutation in the AR gene that completely 
blocks its function; target cells do not respond to testosterone 
or dihydrotestosterone (DHT) (57).

Another pathology belonging to this group is the per-
sistence of the Müllerian ducts syndrome (PMDS). This 
is a rare DSD, characterized by the persistence of Mülle-
rian derivatives and by the presence of the uterus and/or 
fallopian tubes in male subjects who, for the rest, appear 
normally virilized (14,35). The exact prevalence in the 
general population is unknown; the patients are considered 
to be genotypically and phenotypically male and usually 
the affected individuals have cryptorchidism or inguinal 
hernia (58). The testes are normally differentiated and, in the 
absence of persistent cryptorchidism, usually contain germ 

cells; however, affected males can be sterile, as the testes 
are often not properly connected to the excretory ducts due 
to aplasia of the epididymis and the upper part of the vas 
deferens (59). Testosterone levels are usually normal unless 
testicular degeneration is present. PMDS is transmitted in an 
autosomal recessive manner and is due to the mutation of the 
anti-Müllerian hormone gene (AMH; 19p13.3) (16,60).

DSD of sex chromosomes. This group of DSD determi-
nes anomalies in the sex chromosomes and includes the 
Turner syndrome, Klinefelter syndrome and mixed gonadal 
dysgenesis (61). Turner syndrome is due to the partial or 
total monosomy of one of the two X chromosomes. It has 
a prevalence of 1:2,000-1:2,500 female infants (62). This 
syndrome is characterized by stature growth deficit, with a 
short final stature on average of 145-150 cm, and primary 
amenorrhea as a result of the involution of the ovaries (63). 
Renal anomalies such as horseshoe kidney, and total or 
partial duplication of the collecting system may also be 
present in the syndrome (64). Cardiac anomalies such as the 
bicuspid aortic valve, coarctation of the aorta, stenosis of 
the aortic valve and prolapse of the mitral valve, aortic dis-
section may occur in 15% -50% of cases (65–67). Affected 
patients have an increased risk of developing: hearing loss, 
thyroid disease, type 1 diabetes mellitus and celiac disease 
(68). In adulthood, however, they are at risk of developing 
obesity and type 2 diabetes mellitus (69). The syndrome is 
not normally associated with mental retardation, but learning 
difficulties have been reported (70).

Another DSD belonging to this group is Klinefelter 
syndrome (KS), which is a chromosomal disorder due to the 
presence of one or more Xs in a male’s karyotype (71). In 
the neonatal period, there is a small penis with the possibility 
of hypospadias and/or cryptorchidism (72). Subsequently, 
language delay may occur around 3-4 years of age, which 
if not treated can be associated with reading defects, poor 
academic performance and a lack of self-confidence, which 
in adolescence can promote psycho-social discomfort 
(70,73). From an intellectual point of view, they are perfectly 
normal. Mental retardation in KS has the same incidence as 
the general population, about 3% (74,75).

At puberty, there may be a delay in sexual development 
with a definitive testicular volume that hardly exceeds 
10ml, while the penis has a normal development (76). If the 
condition is not identified early, some degree of overweight 
can occur, with female-type fat deposition and, at puberty, 
mammary gland development or gynecomastia (77). These 
children are more prone to autoimmune diseases, metabolic 
syndrome and in 92% of cases, they have azoospermia with 
consequent infertility (75,78).

Physical examination

Physical anomalies may be arguably framed by a careful 
physical examination of the newborn (38). Such evaluation 
should be carried out by a multi-disciplinary team that inclu-
des a pediatrician, endocrinologist, urologist or gynecologist, 
surgeon, geneticist and psychologist or psychiatrist if it is 
considered appropriate (79,80). Social workers and experts 
in medical ethics could be of great help, if their presence is 
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allowed by the local resources, depending on the location 
and the social development. The most recent guidelines 
advise the specialists to chart a clinical pathway taking into 
consideration the possible diagnosis and gender assignment 
treatment before making any recommendations to the family. 
Thirdly we must stress the importance of possessing appro-
priate and effective communication skills, especially when 
discussing with the family which most commonly lacks any 
proper tool to process the delicate situation their newborn 
is going through (37,81).

The dysmorphisms included in the wide group of the 
DSD are often caused by a genetic pathology, this being 
the case for 7% of children with hypospadias, 3% of those 
affected by cryptorchidism and 13% of patients presenting 
both conditions (82). The pediatrician to perform a physi-
cal examination should start by taking an accurate family 
history, taking into account several conditions such as the 
presence of eventual parental consanguinity, multiple abor-
tions, cases of infertility, Sudden Infant Death syndrome or 
a previous genital anomaly (83). The clinician has to ask 
the mother questions about her health, both in general and 
during the pregnancy to expose signs of virilization such 
as hirsutism which could be related to congenital adrenal 
hyperplasia (39). Furthermore, the ingestion of drugs and 
the exposure to specific environmental factors should be 
carefully taken into account since those elements could 
have led to the inhibition of virilization of the fetus during 
the pregnancy (84). An adequate history should also include 
the results of any prenatal tests performed and concentrate 
on what are the current concerns of the parents (85). It is 
pretty common among them to refuse to acknowledge the 
presence of atypical genitals usually for a social and cultural 
disadvantage, indeed, they show express confidence about 
the actual sex of the baby probably as a defense mechanism 
of self-persuasion (86).

Most parents, being a genuine reflection of contempo-
rary society, are usually unaware of the existence of DSD 
and correlated medical conditions before the diagnosis of 
their child (87). An ongoing conflict that has been traced 
by the experts is the one between the desire to preserve the 

privacy of the affected child to avoid stigmatization and the 
sharing of the condition to social support access (88). The 
clinical evaluation must start with inspection and palpation 
to define the degree of genital anomaly, quantified by using 
the External Genitalia Score (EGS), a useful tool to iden-
tify the patients who could benefit from further medical 
investigations (89). This score is a modified more recent 
gender-neutral version of EMS, the External Masculinisa-
tion Score whose effectiveness has been proven repeatedly 
since it is objective, standardized and widely used, but that 
undoubtedly lacks a validated purpose when it comes to 
assigned females affected by a DSD (90). The non-binary 
EGS can instead be applied in both typical male and female 
babies and those affected by an alteration in their genital 
characteristics, making it a reliable and easy-to-use tool 
for a detailed description of external genitalia in neonates 
and infants (90).

While the EMS goes from 0 to 12, this being the score 
corresponding to the absence of any DSD in a typical boy, 
the EGS uses a gradual scale whose range of 0-12 goes from 
female to male (81,89).

The five characteristics of the external genitalia whose 
phenotype leads to the allocation of points are the ones 
listed in Table 2 (90). For legal medical reasons and for 
an accurate medical history, which would be available to 
the patient and the future health care professional dealing 
with the case, the detailed physical examination must be 
documented thoroughly (70). In the individuals presenting 
normal female external genitalia, the palpation allows the 
research of the gonads, the localization of the urethral 
meatus must be noted, together with the presence of an 
additional orifice that would correspond to the vaginal one 
(3). After defining the presence of eventual hypospadias or 
the much rarer, ones according to the localization respecti-
vely in the ventral or dorsal surface of the genital tubercle, 
the pediatrician may proceed to the careful measurement 
(91). It is important to describe the degree of labioscrotal 
fusion, whose range goes from the complete absence to 
a posterior fusion of labia majora to a  complete fused 
scrotum (79,81).

3 2.5 2 1.5 1 0.5 0

Labioscrotal Fusion Fused Posterior Fusion Unfused

Genital Tubercle Length 
(mm)

>31 26-30 21-25 10-20 <10

Urethral Meatus Top of the GT Coronal Glandular Along with 
the GT

At the GT base Labioscrotal Perineal

Right Gonad
Labioscrotal Inguinal Impalpable

Left Gonad

Table 2. The table shows the corresponding score for each conformation of the analyzed anatomical landmarks (GT = Genital Tubercle).
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The children whose physical examination can lead to 
a suspicion of DSD and who should be investigated by a 
specialist are the following: 
– those with a combination of genital anomalies and a 

resulting EMS lower than 11, since typical boys in se-
veral studies almost entirely received the highest score 
of 12; 

– those with isolated perineal hypospadias, micropenis 
and/or clitoromegaly; 

– those affected by any form of familial hypospadias. 
It is worth stating that this will avoid further medical 

evaluations for boys with isolated glandular hypospadias 
and boys with unilateral inguinal testis, which only result 
in a loss of 1 point for each mentioned alteration when it 
comes to define the EMS (92).

 
The diagnostic process

The correct diagnostic process includes: 
1. Karyotype, whose results are usually available within 

24/48 hours from the sampling and represent a manda-
tory step in the management of DSD since it defines 
one of the three major diagnostic subclasses (93). The 
initial management could benefit from the fluorescence 
in situ hybridization (FISH) or polymerase chain reaction 
(PCR) techniques which involve the use of X- and Y-
specific probes, the latter having largely replaced the first 
one (94). It has to be reminded that the mosaicisms could 
be tissue-dependent and that the test should be repeated 
in cases of prenatal karyotype mismatch (95,96).

3. The ultrasound examination is the most widely used 
imaging technique for internal sex organs, that unfortu-
nately doesn’t lack common misleading results, since it 
is operator dependent and requires a full bladder (85). 
Valid alternatives include a magnetic resonance imaging 
(MRI), likewise aimed to evaluate and demonstrate 
internal gonads and genitalia, and a genogram, used to 
assess the urethra, vagina, and any fistulas or complex 
tracts. Further investigation would include the laparo-
scopy which undoubtedly allows the straightforward 
identification of gonads with an appropriate grade of 
invasivity and it also makes possible intervention in the 
same procedure (97,98).

3. Laboratory investigations, including 17OH-proge-
sterone, serum testosterone, Anti-Müllerian hormone 
(AMH), cortisol, androstenedione, gonadotrophins and 
uranalysis, are usually available within one week (81). 
Serial measurements have been advised strongly since 
the value of steroid hormones and gonadotrophins fluc-
tuate over the first few weeks of life and abnormalities 
of electrolytes in patients with salt-losing conditions are 
not to be found until the second to the third week of life 
(39). Even if the physiological role of the testosterone is 
indisputable as a marker of well-functioning testes, the 
available laboratory technique usually lacks an accepta-
ble specificity grade with many cases of cross-reaction 
with other conjugated steroids (97). For this reason, the 
definition of the serum AMH level is a more reliable tool 
when it comes to defining the functionality of testes (60). 

Moreover, AMH can be of great help in order to assess 
cases of anorchia, 46 XY complete gonadal dysgenesis 
and cases of persistent Mullerian duct syndrome (PMDS) 
with a defect of the AMH gene. It has been proven that the 
AMH concentration is completely different in boys and 
girls, especially in early childhood, with 200 ng/ml being 
the most widely accepted cut-off to define normality (99). 
Neuroinflammatory markers are also affected in DSD be-
cause immunocompetent cells in the brain are responsive 
to steroid hormones (100,101). Interleukin (IL)-1β, IL-6, 
IL-10 and tumor necrosis factor-alpha (TNF-α) and other 
neuropeptides regulate our immune system (102–106). 
Altered levels in neuroinflammation are indeed linked to 
the history of DSD (100,101). However, the neurobiolo-
gical causes behind neuroinflammation and DSC are not 
yet fully interpreted.
Even if the first-line investigations are usually enough 

to determine the sex of rearing, the multidisciplinary team 
taking care of the child could consider it appropriate to run 
second-line tests as a gonadal biopsy (107). In the end, the 
experts agree on the importance of the human chorionic 
gonadotropin (HCG) stimulation test as a reliable diagno-
stic instrument used to evaluate testicular function during 
childhood (108). For instance, if there are viable testicular 
Leydig cells, a single injection of HCG at an effective dosage 
of 100 iu/kg can lightly increase the testosterone level, but 
noticeably for 72 to 120 hours (108).

Life-threatening conditions

One of the main objectives of the pediatrician in the 
management of a patient with DSD  is to exclude life-
threatening conditions such as adrenal and/or renal failure 
or tumors (109). Those conditions could be caused by the 
DSD itself or be the result of a linked non-genital malfor-
mation that makes the management of the patient more 
complex (97,110).

The congenital disorders associated with adrenal dy-
sfunctions can be found in individuals with both typical 
karyotypes, i.e. 46,XX and 46,XY, but in the first case the 
genital anomalies are caused directly by the adrenal steroi-
dogenic disorder, while the latter is due to the correlated 
testicular dysfunction (36). In the case of primary adrenal 
insufficiency, the reduction in cortisol secretion and the as-
sociated overproduction of ACTH cause the trophic impact 
on the genitals, while the eventual aldosterone deficiency 
may lead to salt-wasting crises, which have to be carefully 
considered for their deadly potential (111).

Renal failure can be found in the Denys–Drash syndro-
me, due to the progressive glomerulosclerosis, in the strictly 
associated Frasier syndrome and, with a lower prevalence, 
in the Wilms Tumor, whose incidence among the patients 
affected by the Denys-Drash almost reaches the 75% of the 
total and often requires urological surgery such as neph-
rectomy and renal transplantation (112,113). That is why, 
as we mentioned above, a pediatrician should investigate 
the proper functioning of the renal structure in all patients 
affected by DSD (97,112,114,115).

The tumor risk for specific types of cancers is signi-
ficantly increased, resulting clinically relevant. The most 
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frequent forms of malignancies are the seminomatous 
and non-seminomatous types of tumors, which are clas-
sified as type-II Germ Cell Tumor (25,28). The proposed 
underlying reason for the increased risk of cancer is the 
testicular dysgenesis syndrome, which also links infertility 
and cryptorchidism (116). For the development of type-II 
Germ Cell Tumor in the patients affected by DSD a crucial 
element is the presence of the gonadoblastoma locus of the Y 
chromosome, shortened GBY, whose likely candidate gene 
could be the testis-specific protein on the Y chromosome, 
shortened to TSPY (117–119).

Since the GBY is a prerogative for malignant tran-
sformation, its presence in the karyotype of a patient with 
DSD is the discriminating factor for the risk classification 
at different levels: high, intermediate and low as shown in 
Table 3. It should be noted that some entities are quite rare 
and, as a consequence, the collected data are insufficient, 
which would otherwise allow the specific definition of the 
risk: for this reason, there must be added the unknown 
category, which includes 5 alpha-reductase deficiency and 
Leydig-cell hypoplasia (109,120). The recommended action 
for each group may differ, ranging from the gonadectomy 
in the high-risk one to the strict monitoring or the execution 
of a biopsy (120).

Gender assignment

The pediatrician is involved in the medical care of 
infants, children and adolescents, and one of the main 
objectives as a public health provider is to hand over to the 
community well-adjusted, functional members of society 
(70,121). Since sexual activity, gender identity and repro-
ductive health are three fundamental aspects of the well-
being of an individual, what has been said about pediatrics 
is valid in the management of patients with DSD (81). The 
DSD definition has replaced the terms “hermaphrodite”, 
which results imprecise and mythological, and “intersex”, 
which for some carried a stigma: patients with DSD aren’t 
in between sexes, but just show variations in some parts of 
the body scientifically used to assign one’s gender (122). The 
latest proposed term is “variations in sex characteristics”, 

which seem to empower the patients with DSD. Neverthe-
less, in some cases the obsoletes terms have been used by 
the affected individuals or their advocates, it being the case 
of the Intersex Society of North America which, during the 
nineties, used the motto “Hermaphrodites with Attitude” 
(123). Anyway, health care providers must choose carefully 
the terms taking into consideration the preference of the 
individuals affected (123).

In the light of the above, one must consider how in the 
latest period the strictly binary structure of society which 
has been the rule throughout the history of Western culture 
is rapidly blurring. Unlike Europe and America, Southern 
Indian countries such as Pakistan have long been tolerant 
towards the third gender, there called Khawaja Sira, which 
forms part of the country’s established culture (124). Even 
if Pakistani citizens forming part of this third gender aren’t 
entitled to the same civil rights people have in the European 
liberal society, the example may be of help to understand 
how gender non-conforming attitudes have always formed 
part of the human behavior and must be accepted and respec-
ted (37,125). In the past decade, an increase in the societal 
acceptance of non-stereotypic gender presentation can be 
clearly perceived (126). A growing number of countries now 
recognize non-binary or third gender classifications, either 
as voluntary opt-in, as is the case for Australia, Canada and 
Denmark, or for intersex people only, as it happens in Ger-
many and Austria. Furthermore, many national jurisdictions 
have been providing explicit protection against unnecessary 
and harmful modifications to the sex characteristics of chil-
dren, the first being Malta in 2015 which prohibited forced 
surgical intervention on intersex minors through a law that 
recognized the right to bodily integrity and physical auto-
nomy (37,127–129).

It is important to assess if the damage caused by irre-
versible surgical treatment is wider than the one caused by 
a delayed gender assignment (129). One of the bioethicist 
principles considers “ethical” essential for medical practice 
the respect for the autonomy of the patient, which is legally 
reified by informed consent (130). Pediatric health care 
implies a more complex situation where perhaps the best ap-
proach is the parental permission combined with childhood 
assent, for this reason, many pediatricians and mental health 

RISK GROUP DISORDER INTERVENTION

HIGH

Gonadal Dysgenesis (+y) intrabdominal

Gonadectomy
Partial Androgen Insensitivity Non-Scrotal

Frasier; Denys-Drash

INTERMEDIATE

Y+ (GBY+) Turner syndrome

Gonadal Dysgenesis (+y)
Biopsy and Irradiation

Partial Androgen Insensitivity Non-Scrotal

17b-hydroxysteroid dehydrogenase deficiency Monitor

LOW

Complete Androgen Insensitivity Biopsy

Ovotestis DSD Testis removal

Y- Turner None

Table 3. The table shows the different types of interventions depending on the risk of tumor of sexual developmental disorders (DSD).
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providers, experienced in DSD treatment, advise deferring 
any irreversible sex assignment treatment until the person 
being treated can decide autonomously, focusing instead 
on the protection of the child’s physical, psychological and 
social integrity (127,130–132). Likewise, multiple studies 
have estimated that the prevalence of gender dysphoria in 
patients with DSD ranges between 8.5% and 20%, showing 
a rejection of the sex which has been assigned at birth with 
major consequences for the patient’s psychological integrity 
(133). Nonetheless, gender uncertainty can undoubtedly be 
a source of stress for the family of the affected child, the 
uncomfortable initial situation must be assessed through 
psychological support which should be offered during the 
finalization of the diagnosis and families are processing the 
diagnosis as well for further decision-making (134).

It becomes clear how many factors can influence the 
eventual gender assignment which follows the diagnosis, 
those are the disorder itself, since a similar gender role be-
havior can be outlined in each group of patients, the genital 
appearance and their surgical management, the hormone 
replacement therapy which shall be necessary and for how 
long, the potential for a satisfying sexual activity and the 
preservation of fertility (89). One should rely partly upon 
the familial views and cultural circumstances or biases, too 
(81,135). Historically the fertility potential was the strongest 
reason for any decision regarding the sex assignment in 
patients with DSD, since it relates to the instinct to procre-
ate for species preservation (136). To fulfill one’s desire to 
have a family, other ways can be equally rewarding such as 
adoption, which doesn’t carry any risk of germ cell cancer 
or unwanted hormone production (132,136).

What has been mentioned above can be applied speci-
fically to any DSD whereby the following example may be 
illustrating the topic. Children with 46,XY affected by 5α-
reductase-type 2 deficiency or 17β-hydroxysteroid dehydro-
genase-type 3 deficiency, which both have a non-functioning 
androgen biosynthesis, are usually raised as girls since they 
possess female-appearing genitalia (3,43). When they hit 
puberty, because of the virilization due to the increase in 
testosterone level, approximately 60% of the patients choose 
to live as males. Nowadays an increased rate of XY patients 
with a normal level of testosterone at birth, regardless of the 
genital malformation, consisting for example of a micropenis 
which, due to the absence of a labioscrotal fusion, is often 
misperceived as a hypertrophic clitoris, is assigned to the 
male sex, for the majoritarian male gender identity combined 
with the fertility preservation (137,138).

In the case of Congenital Adrenal Hyperplasia (CAH), 
nine out of ten patients that have been assigned female at 
birth identify as female in adulthood, anyway gender dys-
phoria’s prevalence is calculated as being approximately 
five percent, much higher than the general population. Girls 
with CAH undoubtedly show a behavioral pathway typical 
of boys, due to androgen exposure (139–141). Contradic-
ting pieces of evidence regarding markedly virilized 46,XX 
affected by CAH advise either to assign them as females, 
already a long-established guideline, or as males, despite the 
loss of fertility and the necessity of life-long replacement 
therapy. This avoids the risk of a feminizing genital surgery 
and those reared male seem to have a satisfactory social and 
sexual life as male adults (142–144) .

Indeed, the sex of rearing is the best predictor of long-
term gender development in patients with 46,XX affected 
by congenital adrenal hyperplasia (129,139). Practically all 
patients with complete androgen insensitivity syndrome are 
born with female-appearing external genitalia, are reared 
female and express a female-typical behavior in long-term 
follow-up virtually without any case of gender dysphoria, 
regardless of the karyotype being XY (128). Such reinsuring 
results are not the case for partial androgen insensitivity 
syndrome, since a dissatisfaction of roughly 25% has been 
proved when the patient is assigned male as an infant and 
12% when they are raised as females (145).

The role of surgery and hormonal replacement therapy

In the management of a patient with DSD, hormone 
replacement therapy plays a key role in helping boost the 
growth and pubertal development and for maintaining the 
secondary sex characteristics as well as for preserving psy-
chosocial and sexual health (146). Clearly, it is important 
to monitor the clinical response to the therapy and the level 
of the hormone (110). Raised male individuals with 46, 
XY have an undebatable need for testosterone replacement 
therapy in order to induct puberty, preserve a physiological 
sexual drive and stimulate the development of secondary 
sexual traits (147,148). To optimize virilization, a valid 
alternative for patients with 5α reductase-type 2 at higher 
doses can be topical dihydrotestosterone which helps promo-
te the virilization, e.g. increasing the penile length, without 
undesired side effects such as gynecomastia (84,149,150). 
In girls with 46,XY estrogen replacement is needed around 
9 to 11 years of age to promote breast increase and general 
feminization, taking into account the risk for excessive bone 
maturation (110,151). Testosterone can improve the libido 
of patients with complete androgen insensitivity (152). 
Progesterone replacement is recommended to induce endo-
metrial maturation and cycling in patients with the uterus 
(109,110). In conclusion, glucocorticoids are necessary in 
the case of 46,XY patients with classical congenital adrenal 
hyperplasia to avoid adrenal insufficiency and hypertensive 
crisis and mineralocorticoids for those who are salt-losing 
(110,153).

Since the discordance between the sex of rearing and 
the atypical genital appearance can cause distress to the 
family as well as the patient during adolescence, surgery 
was considered in the past the most determining factor for 
the outcome in patients with DSD (87). This has changed 
due to the increasing surgical reintervention rate, the pos-
sible infectious and non-infectious complications and the 
patients being dissatisfied with function or appearance 
ranging respectively from 20% to 22% (124,132,154). The 
surgeon, outlining the surgical sequence and the timing of 
the interventions, aims to allow future sexual activity and 
optimize fertility potential, in order to preserve the quality 
of life of the individual (81,110,155). 

Masculinizing surgical procedures are to be performed 
in 46,XY patients who have been reared as males. Those 
may include:
-      Correction of hypospadias, through ortophalloplasty and 

urethroplasty, with a prior administration of testosterone 
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which may increase the penile length; 
-     Scrotoplasty, whose simultaneous performance with the 

urethroplasty has been disadvised because of vascular 
concerns, consisting either of the relocation of the te-
stes or orchidopexy when a conservative approach is 
not possible and orchiectomy is necessary in order to 
prevent malignancies; 

-     Resection of Müllerian remnants, usually through laparo-
scopy, especially when the patient is affected by urinary 
tract infection or stones.(98,110,156,157).
Feminization can be much more complex and imaging 

techniques are usually necessary to fully understand the ac-
tual patient’s anatomy. Feminizing genitoplasty includes:
-    Clitoriplasty, with reduction of phallic size, whose 

innervation has to be kept intact to preserve orgasmic 
function and erectile sensation; 

-      Vaginoplasty, with vaginal dilatation usually performed 
when the patient hits puberty, which often implies the 
separation of the urethra from the vaginal introitus since 
a urogenital sinus is present. 

-      Constructing labioscrotal folds, which are usually fused 
at a variated grade (81,110,158,159).

Conclusions

Considering what emerges from the literature, the pe-
diatrician should identify the pathologies that are part of the 
disorders of sexual development. He will care the patient 
at birth or in the first days of life and guide the clinical and 
diagnostic paths of these patients. The most important thing 
is certainly being able to communicate the diagnosis to the 
family trying to support it over time by sustaining its fears 
and doubts. It will also be crucial that the patient suffering 
from DSD is framed as early as possible to avoid suffering 
marginalization and the social stigma deriving from his 
condition. Fortunately, compared to the past, these patients 
can lead a life comparable to that of their peers and, unlike 
what happened in past decades, they try to have an attitude 
of watchful waiting. What emerges from clinical experience 
is that in cases where it is necessary to perform a surgical 
reassignment of sex this is not done in early childhood, but 
subsequently to make sure that the patient can choose based 
on the feeling of her/his gender. This attitude of expectation 
and support of the affected patients once again highlights the 
importance of the role of the pediatrician that should follow 
the patients for several years, supporting their choices and 
favoring the transition from pediatric to adulthood in the 
best possible way. 

Although a meticulous review of the currently existing 
literature has been performed, there are no up-to-date and 
unambiguous guidelines to follow in the management of 
children with DSD. Furthermore, further studies are needed 
to draw up the correct therapeutic diagnostic process to be 
carried out with these patients.
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