9 research outputs found

    A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin

    Get PDF
    Nucleosome composition actively contributes to chromatin structure and accessibility. Cells have developed mechanisms to remove or recycle histones, generating a landscape of differentially aged nucleosomes. This study aimed to create a high-resolution, genome-wide map of nucleosome turnover in Schizosaccharomyces pombe. The recombination-induced tag exchange (RITE) method was used to study replication-independent nucleosome turnover through the appearance of new histone H3 and the disappearance or preservation of old histone H3. The genome-wide location of histones was determined by chromatin immunoprecipitation–exonuclease methodology (ChIP-exo). The findings were compared with diverse chromatin marks, including histone variant H2A.Z, post-translational histone modifications, and Pol II binding. Finally, genome-wide mapping of the methylation states of H4K20 was performed to determine the relationship between methylation (mono, di, and tri) of this residue and nucleosome turnover. Our analysis showed that histone recycling resulted in low nucleosome turnover in the coding regions of active genes, stably expressed at intermediate levels. High levels of transcription resulted in the incorporation of new histones primarily at the end of transcribed units. H4K20 was methylated in low-turnover nucleosomes in euchromatic regions, notably in the coding regions of long genes that were expressed at low levels. This transcription-dependent accumulation of histone methylation was dependent on the histone chaperone complex FACT. Our data showed that nucleosome turnover is highly dynamic in the genome and that several mechanisms are at play to either maintain or suppress stability. In particular, we found that FACT-associated transcription conserves histones by recycling them and is required for progressive H4K20 methylation

    Recombination-Induced tag exchange (RITE) cassette series to monitor protein dynamics in Saccharomyces cerevisiae

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License.Proteins are not static entities. They are highly mobile and their steady state levels are achieved by a balance between ongoing synthesis and degradation. The dynamic properties of a protein can have important consequences for its function. For example, when a protein is degraded and replaced by a newly synthesized one, post-translational modifications are lost and need to be reincorporated in the new molecules. Protein stability and mobility are also relevant for duplication of macromolecular structures or organelles, which involves coordination of protein inheritance with the synthesis and assembly of newly synthesized proteins. To measure protein dynamics we recently developed a genetic pulse-chase assay called Recombination-Induced Tag Exchange (RITE). RITE has been successfully used in Saccharomyces cerevisiae to measure turnover and inheritance of histone proteins, to study changes in post-translational modifications on aging proteins, and to visualize the spatiotemporal inheritance of protein complexes and organelles in dividing cells. Here we describe a series of successful RITE cassettes that are designed for biochemical analyses, genomics studies, as well as single cell fluorescence applications. Importantly, the genetic nature and the stability of the tag-switch offer the unique possibility to combine RITE with high-throughput screening for protein dynamics mutants and mechanisms. The RITE cassettes are widely applicable, modular by design, and can therefore be easily adapted for use in other cell types or organisms.This project was sponsored by the Netherlands Genomics Initiative and by The Netherlands Organization for Scientific Research.Peer Reviewe

    A Fluorescent Broad-Spectrum Proteasome Inhibitor

    Get PDF
    The proteasome is an essential evolutionary conserved protease involved in many regulatory systems. Here, we describe the synthesis and characterization of the activity-based, fluorescent, and cell-permeable inhibitor Bodipy TMR-Ahx3L3VS (MV151), which specifically targets all active subunits of the proteasome and immunoproteasome in living cells, allowing for rapid and sensitive in-gel detection. The inhibition profile of a panel of commonly used proteasome inhibitors could be readily determined by MV151 labeling. Administration of MV151 to mice allowed for in vivo labeling of proteasomes, which correlated with inhibition of proteasomal degradation in the affected tissues. This probe can be used for many applications ranging from clinical profiling of proteasome activity, to biochemical analysis of subunit specificity of inhibitors, and to cell biological analysis of the proteasome function and dynamics in living cells.

    Review of opportunities for new long-lived particle triggers in Run 3 of the Large Hadron Collider

    No full text
    Long-lived particles (LLPs) are highly motivated signals of physics Beyond the Standard Model (BSM) with great discovery potential and unique experimental challenges. The LLP search programme made great advances during Run 2 of the Large Hadron Collider (LHC), but many important regions of signal space remain unexplored. Dedicated triggers are crucial to improve the potential of LLP searches, and their development and expansion is necessary for the full exploitation of the new data. The public discussion of triggers has therefore been a relevant theme in the recent LLP literature, in the meetings of the LLP@LHC Community workshop and in the respective experiments. This paper documents the ideas collected during talks and discussions at these Workshops, benefiting as well from the ideas under development by the trigger community within the experimental collaborations. We summarise the theoretical motivations of various LLP scenarios leading to highly elusive signals, reviewing concrete ideas for triggers that could greatly extend the reach of the LHC experiments. We thus expect this document to encourage further thinking for both the phenomenological and experimental communities, as a stepping stone to further develop the LLP@LHC physics programme

    C. Literaturwissenschaft.

    No full text

    Observation of the rare Bs0oμ+μB^0_so\mu^+\mu^- decay from the combined analysis of CMS and LHCb data

    No full text
    corecore