4,580 research outputs found

    The calibration and flight test performance of the space shuttle orbiter air data system

    Get PDF
    The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work

    Cosmological Signatures of Anisotropic Spatial Curvature

    Get PDF
    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.Comment: 21 pages, 1 figure. To appear in JCA

    Inflationary Perturbations in Anisotropic, Shear-Free Universes

    Full text link
    In this work, the linear and gauge-invariant theory of cosmological perturbations in a class of anisotropic and shear-free spacetimes is developed. After constructing an explicit set of complete eigenfunctions in terms of which perturbations can be expanded, we identify the effective degrees of freedom during a generic slow-roll inflationary phase. These correspond to the anisotropic equivalent of the standard Mukhanov-Sasaki variables. The associated equations of motion present a remarkable resemblance to those found in perturbed Friedmann-Robertson-Walker spacetimes with curvature, apart from the spectrum of the Laplacian, which exhibits the characteristic frequencies of the underlying geometry. In particular, it is found that the perturbations cannot develop arbitrarily large super-Hubble modes.Comment: 24 pages, 2 figure

    Thiemann transform for gravity with matter fields

    Get PDF
    The generalised Wick transform discovered by Thiemann provides a well-established relation between the Euclidean and Lorentzian theories of general relativity. We extend this Thiemann transform to the Ashtekar formulation for gravity coupled with spin-1/2 fermions, a non-Abelian Yang-Mills field, and a scalar field. It is proved that, on functions of the gravitational and matter phase space variables, the Thiemann transform is equivalent to the composition of an inverse Wick rotation and a constant complex scale transformation of all fields. This result holds as well for functions that depend on the shift vector, the lapse function, and the Lagrange multipliers of the Yang-Mills and gravitational Gauss constraints, provided that the Wick rotation is implemented by means of an analytic continuation of the lapse. In this way, the Thiemann transform is furnished with a geometric interpretation. Finally, we confirm the expectation that the generator of the Thiemann transform can be determined just from the spin of the fields and give a simple explanation for this fact.Comment: LaTeX 2.09, 14 pages, no figure

    Biases on cosmological parameters by general relativity effects

    Get PDF
    General relativistic corrections to the galaxy power spectrum appearing at the horizon scale, if neglected, may induce biases on the measured values of the cosmological parameters. In this paper, we study the impact of general relativistic effects on non standard cosmologies such as scenarios with a time dependent dark energy equation of state, with a coupling between the dark energy and the dark matter fluids or with non-Gaussianities. We then explore whether general relativistic corrections affect future constraints on cosmological parameters in the case of a constant dark energy equation of state and of non-Gaussianities. We find that relativistic corrections on the power spectrum are not expected to affect the foreseen errors on the cosmological parameters nor to induce large biases on them.Comment: 17 pages, 5 figures, one added figure, results of Tab. I revised, version accepted for publication in PR
    • …
    corecore