11 research outputs found

    Sociality predicts individual variation in the immunity of free-ranging rhesus macaques

    Get PDF
    This work was supported by CONICYT-Chilean scholarship [number 72190290], NIH grant [number R01AG060931] to N.S-M., L.J.N.B. and J.P.H., NIH grant [number R00AG051764] to N.S-M., NIH grant [number MH118203] to L.J.N.B.. and M.L.P, and NSF grant [number 1800558] to J.P.H. and Susan Anton. The CPRC is supported by the National Institutes of Health. An Animal and Biological Material Resource Center Grant [P40OD012217] was awarded to UPR from the Office of Research Infrastructure Programs (ORIP), and a Research Facilities Construction Grant [C06OD026690] was awarded for the renovation of CPRC facilities after Hurricane Maria.Social integration and social status can substantially affect an individual's health and survival. One route through which this occurs is by altering immune function, which can be highly sensitive to changes in the social environment. However, we currently have limited understanding of how sociality influences markers of immunity in naturalistic populations where social dynamics can be fully realized. To address this gap, we asked if social integration and social status in free-ranging rhesus macaques (Macaca mulatta) predict anatomical and physiological markers of immunity. We used data on agonistic interactions to determine social status, and social network analysis of grooming interactions to generate measures of individual variation in social integration. As measures of immunity, we included the size of two of the major organs involved in the immune response, the spleen and liver, and counts of three types of blood cells (red blood cells, platelets, and white blood cells). Controlling for body mass and age, we found that neither social status nor social integration predicted the size of anatomical markers of immunity. However, individuals that were more socially connected, i.e., with more grooming partners, had lower numbers of white blood cells than their socially isolated counterparts, indicating lower levels of inflammation with increasing levels of integration. These results build upon and extend our knowledge of the relationship between sociality and the immune system in humans and captive animals to free-ranging primates, demonstrating generalizability of the beneficial role of social integration on health.Publisher PDFPeer reviewe

    Trade-offs between sociality and gastrointestinal parasite infection in the context of a natural disaster

    Get PDF
    This work was supported by ANID-Chilean scholarship [number 72190290], the National Institutes of Health Grants [R01AG060931] to N.S-M., L.J.N.B. and J.P.H., [R00AG051764] to N.S-M, [R01MH118203] to M.L.P., M.J.M, L.J.N.B. and N.S-M., [R01MH096875] to M.L.P., L.J.N.B. and M.J.M., [U01MH121260] to N.S-M., M.L.P. and M.J.M., a European Research Council Consolidator Grant to L.J.N.B. [Friend Origins - 864461].Parasites and infectious diseases constitute important challenges particularly for group-living animals. Social contact and shared space can both increase parasite transmission risk, while individual differences in social capital can help prevent infections. For example, high social status individuals and those with more or stronger affiliative partnerships may have better immunity and, thus, lower parasitic burden. To test for health trade-offs in the costs and benefits of sociality, we quantified how parasitic load varied with an individual's social status, as well as with their affiliative relationships with weakly and strongly bonded partners, in a free-ranging population of rhesus macaques, Macaca mulatta. We found that high status was associated with a lower risk of protozoa infection at older ages compared to younger and low-status animals. Social resources can also be protective against infection under environmentally challenging situations, such as natural disasters. Using cross-sectional data, we additionally examined the impact of a major hurricane on the sociality - parasite relationship in this system and found that the hurricane influenced the prevalence of specific parasites independent of sociality. Overall, our study adds to the growing evidence for social status as a strong predictor of infection risk and highlights how extreme environmental events could shape vulnerability and resistance to infection.Peer reviewe

    HIV-1 DNA/MVA vaccination reduces the per exposure probability of infection during repeated mucosal SHIV challenges

    Get PDF
    Historically, HIV vaccines specifically designed to raise cellular immunity resulted in protection from disease progression but not infection when tested in monkeys challenged with a single high virus exposure. An alternative approach, more analogous to human sexual exposures, is to repetitively challenge immunized monkeys with a much lower dose of virus until systemic infection is documented. Using these conditions to mimic human sexual transmission, we found that a multi-protein DNA/MVA HIV-1 vaccine is indeed capable of protecting rhesus monkeys against systemic infection when repeatedly challenged with a highly heterologous immunodeficiency virus (SHIV). Furthermore, this repetitive challenge approach allowed us to calculate per-exposure probability of infection, an observed vaccine efficacy of 64%, and undertake a systematic analysis for correlates of protection based on exposures needed to achieve infection. Therefore, improved non-human primate models for vaccine efficacy can provide novel insight and perhaps renew expectations for positive outcomes of human HIV clinical trials

    Sociality predicts individual variation in the immunity of free-ranging rhesus macaques

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record. R- code used for models and plots available at https://github.com/MPavFox/Sociality-and-Immunity-rhesus.gitSocial integration and social status can substantially affect an individual's health and survival. One route through which this occurs is by altering immune function, which can be highly sensitive to changes in the social environment. However, we currently have limited understanding of how sociality influences markers of immunity in naturalistic populations where social dynamics can be fully realized. To address this gap, we asked if social integration and social status in free-ranging rhesus macaques (Macaca mulatta) predict anatomical and physiological markers of immunity. We used data on agonistic interactions to determine social status, and social network analysis of grooming interactions to generate measures of individual variation in social integration. As measures of immunity, we included the size of two of the major organs involved in the immune response, the spleen and liver, and counts of three types of blood cells (red blood cells, platelets, and white blood cells). Controlling for body mass and age, we found that neither social status nor social integration predicted the size of anatomical markers of immunity. However, individuals that were more socially connected, i.e., with more grooming partners, had lower numbers of white blood cells than their socially isolated counterparts, indicating lower levels of inflammation with increasing levels of integration. These results build upon and extend our knowledge of the relationship between sociality and the immune system in humans and captive animals to free-ranging primates, demonstrating generalizability of the beneficial role of social integration on health.National Institutes of HealthNational Institute for Mental Health ResearchCONICYT-Chilean scholarshipNational Institute of HealthAnimal and Biological Material Resource Cente

    Modulation by Morphine of Viral Set Point in Rhesus Macaques Infected with Simian Immunodeficiency Virus and Simian-Human Immunodeficiency Virus

    No full text
    Six rhesus macaques were adapted to morphine dependence by injecting three doses of morphine (5 mg/kg of body weight) for a total of 20 weeks. These animals along with six control macaques were infected intravenously with mixture of simian-human immunodeficiency virus KU-1B (SHIV(KU-1B)), SHIV(89.6P), and simian immunodeficiency virus 17E-Fr. Levels of circulating CD4(+) T cells and viral loads in the plasma and the cerebrospinal fluid were monitored in these macaques for a period of 12 weeks. Both morphine and control groups showed precipitous loss of CD4(+) T cells. However this loss was more prominent in the morphine group at week 2 (P = 0.04). Again both morphine and control groups showed comparable peak plasma viral load at week 2, but the viral set points were higher in the morphine group than that in the control group. Likewise, the extent of virus replication in the cerebral compartment was more pronounced in the morphine group. These results provide a definitive evidence for a positive correlation between morphine and levels of viral replication

    Serial Cervicovaginal Exposures with Replication-Deficient SIVsm Induce Higher Dendritic Cell (pDC) and CD4+ T-Cell Infiltrates Not Associated with Prevention but a More Severe SIVmac251 Infection of Rhesus Macaques

    Get PDF
    Objective: Intravaginal exposure to simian immunodeficiency virus (SIV) acutely recruits interferon-alpha (IFN-α) producing plasmacytoid dendritic cells (pDC) and CD4+ T-lymphocyte tar-gets to the endocervix of nonhuman primates. We tested the impact of repeated cervicovaginal ex-posures to noninfectious, defective SIV particles over 72 hours on a subsequent cervicovaginal challenge with replication competent SIV. Methods: Thirty-four female Indian Rhesus macaques were given a 3-day twice-daily vaginal exposures to either SIVsmB7, a replication deficient derivative of SIVsmH3 produced by a T lymphoblast CEMx174 cell clone (n = 16), or to CEM supernatant controls (n = 18). On the fourth day, animals were either euthanized to assess cervicovaginal immune cell infiltration or intravaginally challenged with SIVmac251. Challenged animals were tracked for plasma viral load and CD4 counts and euthanized at 42 days after infection. Results: At the time of challenge, macaques exposed to SIVsmB7, had higher levels of cervical CD123 pDCs (P = 0.032) and CD4+ T cells (P = 0.036) than those exposed to CEM control. Vaginal tissues showed a significant increase in CD4+ T-cell infiltrates (P = 0.048) and a trend toward increased CD68+ cellular infiltrates. After challenge, 12 SIVsmB7-treated macaques showed 2.5-fold greater daily rate of CD4 decline (P = 0.0408), and viral load rise (P = 0.0036) as compared with 12 control animals. Conclusions: Repeated nonproductive exposure to viral particles within a short daily time frame did not protect against infection despite pDC recruitment, resulting instead in an accelerated CD4+ T-cell loss with an in-creased rate of viral replication

    Short Communication: Lack of Immune Response in Rapid Progressor Morphine-Dependent and SIV/SHIV-Infected Rhesus Macaques Is Correlated with Downregulation of TH1 Cytokines

    No full text
    Our previous studies have shown two distinct disease patterns (rapid and normal onset of clinical symptoms) in morphine-dependent SHIV/SIV-inoculated rhesus macaques. We have also shown that control as well as 50% of morphine-dependent macaques (normal progressor) developed humoral and cellular immune responses whereas the other half of the morphine-dependent macaques (rapid progressor) did not develop antiviral immune responses after infection with SIV/SHIV. In the present study, we analyzed the association between cytokine production, immune response, and disease progression. To study the immunological effects of morphine at cytokine levels in the context of a lentiviral infection, we inoculated rhesus macaques with a mixture of SHIVKU−18, SHIV89.6P, and SIV/17E-Fr. These animals were followed for a period of 56 weeks for cytokine level production in plasma. Drug-dependent rapid disease progressors exhibited an increase in IL-18 and IL-1Ra and a decrease in IL-12 levels in the plasma. Morphine-dependent normal progressors and control macaques exhibited an increase in both IL-18 and IL-12, whereas IL-Ra levels remained constant throughout the observation period. These results suggest that rapid disease progression in relation to morphine dependency may be the result of an altered cytokine profile

    Immune cell composition varies by age, sex and exposure to social adversity in free‑ranging Rhesus Macaques

    No full text
    Increasing age is associated with dysregulated immune function and increased inflammation—patterns that are also observed in individuals exposed to chronic social adversity. Yet we still know little about how social adversity impacts the immune system and how it might promote age-related diseases. Here, we investigated how immune cell diversity varied with age, sex and social adversity (operationalized as low social status) in free-ranging rhesus macaques. We found age-related signatures of immunosenescence, including lower proportions of CD20 + B cells, CD20 + /CD3 + ratio, and CD4 + /CD8 + T cell ratio – all signs of diminished antibody production. Age was associated with higher proportions of CD3 + /CD8 + Cytotoxic T cells, CD16 + /CD3- Natural Killer cells, CD3 + /CD4 + /CD25 + and CD3 + /CD8 + /CD25 + T cells, and CD14 + /CD16 + /HLA-DR + intermediate monocytes, and lower levels of CD14 + /CD16-/HLA-DR + classical monocytes, indicating greater amounts of inflammation and immune dysregulation. We also found a sex-dependent effect of exposure to social adversity (i.e., low social status). High-status males, relative to females, had higher CD20 + /CD3 + ratios and CD16 + /CD3 Natural Killer cell proportions, and lower proportions of CD8 + Cytotoxic T cells. Further, low-status females had higher proportions of cytotoxic T cells than high-status females, while the opposite was observed in males. High-status males had higher CD20 + /CD3 + ratios than low-status males. Together, our study identifies the strong age and sex-dependent effects of social adversity on immune cell proportions in a human-relevant primate model. Thus, these results provide novel insights into the combined effects of demography and social adversity on immunity and their potential contribution to age-related diseases in humans and other animals
    corecore