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A B S T R A C T   

Social integration and social status can substantially affect an individual’s health and survival. One route through 
which this occurs is by altering immune function, which can be highly sensitive to changes in the social envi
ronment. However, we currently have limited understanding of how sociality influences markers of immunity in 
naturalistic populations where social dynamics can be fully realized. To address this gap, we asked if social 
integration and social status in free-ranging rhesus macaques (Macaca mulatta) predict anatomical and physio
logical markers of immunity. We used data on agonistic interactions to determine social status, and social 
network analysis of grooming interactions to generate measures of individual variation in social integration. As 
measures of immunity, we included the size of two of the major organs involved in the immune response, the 
spleen and liver, and counts of three types of blood cells (red blood cells, platelets, and white blood cells). 
Controlling for body mass and age, we found that neither social status nor social integration predicted the size of 
anatomical markers of immunity. However, individuals that were more socially connected, i.e., with more 
grooming partners, had lower numbers of white blood cells than their socially isolated counterparts, indicating 
lower levels of inflammation with increasing levels of integration. These results build upon and extend our 
knowledge of the relationship between sociality and the immune system in humans and captive animals to free- 
ranging primates, demonstrating generalizability of the beneficial role of social integration on health.   

1. Introduction 

In primates and other mammals, social interactions between con
specifics (i.e., sociality) can have dramatic effects on an individual’s 

health and survival [1,2]. On the one hand, having more and stronger 
social connections has been related to extended lifespan [3,4]. On the 
other, aspects of the social structure of the species (e.g. dominance hi
erarchies, socioeconomic status) may determine individual differences 
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in access to resources [5,6] that can lead to health disparities to those at 
a disadvantage [2]. However, precisely how the social environment ‘gets 
under the skin’ to alter health and survival remains an open and active 
area of inquiry. 

One of the most susceptible systems to variation in the social envi
ronment is the immune system. For example, low socioeconomic status 
in humans has been linked to higher numbers of white blood cells, 
including lymphocytes and natural killer cells [7], which can be markers 
of chronic stress related inflammation [8]. Similarly, longitudinal 
studies have revealed that low socioeconomic status is associated with 
increases in markers of chronic inflammation, such as C-reactive protein 
and interleukin-6 [9]. Low socioeconomic status also affects the sus
ceptibility of individuals to common chronic infections, such as Heli
cobacter pylori, cytomegalovirus, herpes simplex virus and hepatitis 
[10]. Similar effects have been found in animal models. Experimental 
manipulations of social status in captive female rhesus macaques 
(Macaca mulatta) found that low social status induced higher expression 
of genes related to interleukin signaling, T-cell activation, and inflam
mation [11,12]. Another study showed that the increase in T-cell acti
vation in subordinate animals was followed by a decrease in T-cell 
numbers, which was attributed to a higher susceptibility to 
activation-induced T-cell death [13]. 

Opportunities for social support and the quality of these interactions 
(i.e., social integration) constitute the other major component of an in
dividual’s social environment and can also affect the immune system. 
Studies in humans have found that social support- measured as the 
number of close contacts that can be of emotional help - enhanced the 
immunity of individuals infected with HIV, as evidenced by greater 
proliferation of T-helper cells [14]. Diversity of one’s support network- 
measured as the number of social roles that an individual experiences- 
might also reduce the susceptibility to infectious diseases, such as 
common colds [15]. Similarly, having a consistent social support 
network can lead to a reduction in the levels of interleukin-6 in elderly 
people [16]. Furthermore, a recent meta-analysis of studies on 73,037 
individuals found that social integration and perceived social support 
significantly predicted lower levels of inflammatory cytokines, inde
pendent of the cytokine analyzed [17]. 

All these studies provide insight into the crucial role of social status 
and social integration in modulating markers of immunity, pointing to 
inflammatory processes as one of the possible underlying mechanisms 
by which the social environment affects an individual’s health and 
survival. However, there are many other markers of immunity about 
which we know very little when it comes to the social environment. 
Even more, our knowledge about the effects of sociality on the immunity 
of individuals living outside of WEIRD (western, educated, industrial
ized, rich, democratic) human societies [18], or of captivity in the case 
of animal models, where there is no access to medical healthcare and the 
pressure of environmental parasites on the immune system is probably 
higher, is very limited. 

Free-ranging rhesus macaques on Cayo Santiago Island, Puerto Rico, 
are an excellent model for studying the effects of sociality on immune 
function. Monkeys in this population self-organize into groups, interact 
spontaneously with each other, and there is minimal medical interven
tion, and thus individuals typically die of natural causes such as old age 
and disease. There are no predators on the island and the monkeys have 
ad-libitum access to food and water, which makes the social environment 
and rare ecological events, such as natural disasters [19], some of the 
major challenges with which the animals must contend. These features 
have made this population an ideal setting to test findings from labo
ratory animals about the stress response and immunity [20]. Since 2010, 
our group has collected behavioral data on social interactions on this 
population and detailed demographic records exist for all animals since 
the site’s foundation in 1938 [21]. Moreover, a large biobank of tissues 
and organs exists from individuals that were removed as part of popu
lation control implemented by the field station’s management, which 
allows behavioral information to be paired with rarely available and 

extremely valuable postmortem data. 
Here we explored the association between an individual’s levels of 

social integration and social status with anatomical measures of immune 
function and physiological measures of immune activation. As measures 
of immune function, we considered the size of two of the major organs 
involved in immune defenses, the spleen and the liver [22,23]. The main 
role of the spleen is to filter blood-borne pathogens, store and produce 
white blood cells, and contribute to adaptive immunity through the 
production of antibodies [22]. The liver is a sentinel organ that filters 
gut-derived parasites, inducing immune tolerance for non-threats (i.e. 
microbiota) or, conversely, immunity in response to pathogens [23]. It 
also has the largest population of macrophages in the body, and thus 
plays a crucial role in innate immunity [23]. Changes in spleen size (i.e., 
splenomegaly) and liver size (i.e., hepatomegaly) are associated with 
environmental factors, such as parasite exposure [24,25], which can 
affect both organs concurrently [26]. As proxies for immune activation, 
we included standard measures of immunity and health: absolute counts 
of white blood cells, platelets and red blood cell [27]. We had two aims: 
to investigate 1) the relationship between sociality and immune organ 
sizes; and 2) the relationship between sociality and blood measures of 
immune activation. At the same time, we explored the effects of 
important demographic and morphological factors such as age, sex, 
body mass and group membership on our measures of immunity. 

2. Methods 

2.1. Study subjects and location 

Study subjects were free-ranging rhesus macaques (Macaca mulatta) 
living at the Cayo Santiago field station, Puerto Rico, administered by 
the Caribbean Primate Research Center (CPRC). Mean annual popula
tion growth rates of the Cayo Santiago macaques are higher than those 
of wild rhesus populations, which have forced management efforts to
wards live capture and removal of individuals since 1956 [28]. From 
2016 onward, our group started collecting postmortem data on animals 
removed by the CPRC. In 2016, 2018 and 2019, one entire social group 
of animals was scheduled for removal per year. In the year leading up to 
their removal, we collected behavioral data on subadult and adult ma
caques (i.e., 4 years old or more) from those groups. Animals were 
removed between October and November in the respective year, yet not 
all individuals planned for removal were successfully captured. In this 
study we included only those that were removed from the population. 
Our final data set comprised 142 animals (95 females and 47 males of 
known ages) from the three different social groups, each group repre
senting a single year of data (group ID-year: HH-2016, KK-2018, 
S-2019). Subjects’ ages and maternal relatedness were extracted from 
the CPRC demographic database (detailed composition of groups and 
datasets in Table S1 and Fig. S1). 

2.2. Behavioral data collection 

Behavioral data were collected using two data collection protocols 
[29]: 5-min focal animal samples for group S and HH, and group-wide 
scan sampling for group KK. The data collection was done by a single 
experienced observer on Group S (group size: 149 adults) from February 
to October 2019, on group HH (group size: 95 adults and 13 subadults) 
from August to October 2016, and on group KK (group size: 124 adults) 
from January to October 2018. The use of scan sampling in group KK 
was due to the impact of Hurricane Maria, which made landfall in Puerto 
Rico in September 2017. Damage that resulted in inconsistent access to 
electricity in Puerto Rico posed challenges to the use of our power 
reliant data collection computers (Psion Work About Pro ©), so we 
switched to basic tablets, that could be more easily charged from other 
sources (e.g., car battery). This limitation, combined with the dangerous 
post-hurricane terrain that affected our ability to safely follow a focal 
animal, forced us to switch to a scan sampling protocol. Focal sampling 
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was done following a previously established protocol [30]. Briefly, we 
recorded state behaviors (i.e., resting, feeding, travelling) along with all 
affiliative grooming interactions and agonistic encounters along with 
the identity of the focal animal’s adult or subadult social partners. 
Agonistic interactions included threat and submissive behaviors, along 
with contact and non-contact aggression. For scan sampling, we recor
ded state behaviors and all affiliative and agonistic interactions between 
all visible adults and subadults at 15 min intervals. We collected 1.46 ±
0.08 and 3.66 ± 0.64 h of behavioral data per individual in HH and S, 
respectively. For the scan samples in group KK, we collected 548.1±
161.3 behavioral events per individual. 

2.3. Dominance hierarchy 

We computed dominance hierarchies by group and separately for 
males and females [5,31–33]. Our approach is based on the literature in 
this species supporting sex-differences in how social status is acquired 
and on prior evidence that opposite-sex agonistic interactions have no 
impact on health measures [34]. Females are philopatric and form 
maternally inherited stable linear dominance hierarchies, where 
daughters acquire rank just below their mothers [35]. In contrast, males 
typically disperse from the natal group and acquire rank in the new 
group by physical contest and tenure [36]. We built both hierarchies 
using the outcomes of win-loss agonistic encounters from focal/scan 
sampling and ad-libitum observations, with known maternal relatedness 
used to resolve behavioral gaps in the female hierarchy [37]. To account 
for variation in group sizes, dominance rank was defined as the per
centage of group mates from a subject’s sex that they outranked, where 
100% corresponded to the highest-ranking animal [38]. 

2.4. Social networks 

Social integration was quantified using a network approach applied 
to grooming interactions. As proxies for social integration, we consid
ered an individual’s number of grooming partners (degree) and a mea
sure that quantifies the quality of an individual’s grooming partners 
(weighted eigenvector centrality). Grooming degree is a measure of an 
individual’s direct social connections that provides insight into the op
portunities for social support that an individual has. Eigenvector cen
trality quantifies indirect social connections and provides information 
on how well individuals are integrated into the network as a whole [39]. 
We decided to examine direct and indirect measures of social integration 
as both can significantly influence an individual’s health outcomes [4]. 

We generated weighted social networks for each behavioral group 
using the R package ‘igraph’ (Fig. 1) [40]. Social networks were built 
including all adult animals from a group, with the addition of subadults 
to group HH, thus network metrics reflect an individual’s score relative 
to all other members of their group. For groups in which focal sampling 

was used, edge weight was computed as the amount of time (secs) a pair 
engaged in grooming relative to the total observation time (hours) for 
each individual in the dyad [30]. Given the limitations of scan sampling 
to quantify the duration of behaviors, for group KK we used the number 
of occurrences of behavioral events instead of using time to compute 
edge weights. Behavioral events included all social interactions and 
state behaviors. Specifically, we computed edge weight as the number of 
times a pair of individuals (A,B) engaged in grooming relative to the 
total number of behavioral events observed for individual A plus the 
number of behavioral events for individual B. Our edge weights in KK 
thus represent how often a pair of individuals were observed grooming 
relative to how often they were observed in social and other mainte
nance behaviors. Grooming degree does not consider edge weights in its 
computation, thus to control for sampling effort in the group where 
behavioral data was collected by scan sampling (KK), an individual’s 
grooming degree was divided by the total number of behavioral events 
recorded for that animal. For groups where animals were sampled with 
focal observations, sampling was evenly distributed across individuals. 
Additionally, group differences attributed to sampling methods can be 
neglected as social integration levels were determined by comparing an 
individual to others within their group. We considered animals to be 
part of the group if they were observed for a period of time (or number of 
occurrences for KK) equal or higher than the mean - 2SD for the group. 
For statistical analyses, we standardized both measures of social inte
gration within groups by dividing an individual’s value for a given 
metric by the mean value of that metric for the group. 

2.5. Physiological and anatomical markers of immunity 

All procedures related to the removal of animals were conducted by 
the CPRC following standard protocols approved by the IACUC (Insti
tutional Animal Care and Use Committee). Sedation was performed by 
the administration of ketamine (100 mg/Kg body mass) using the 
squeeze cage method [41]. Immediately after, blood was drawn via 
femoral venipuncture and 4 mL was collected using BD Vacutainer® 
K2-EDTA collection tubes (approximately 4 mL was collected per ani
mal). A veterinarian then performed euthanasia by administering ke
tamine (100 mg/Kg) with Xylazine (10 mg/Kg), followed by heparin 
(100 mg/Kg) and barbiturate (500 mg/Kg). A dual confirmation of death 
was required before necropsies began, whereby spleen, liver and other 
organs were extracted and weighed. Time elapsed between when the 
animals were trapped and when they were euthanized ranged from 1 to 
11 days with an average time of 2.3 days. Spleens, livers, and blood 
samples were collected from each study subject. 

Blood cell counts were obtained through a complete blood count 
(CBC) performed on the VetScan® HM5 analyzer (Abaxis, Inc.). This 
system uses a combination of chemical differentiation and impedance 
technology to detect different types of blood cells and compute other 

Fig. 1. Social networks generated from grooming interactions for all groups included in the study. Females are in blue and males in orange.  The lines connecting the 
nodes represent edge weights, where line thickness indicates the frequency with which a pair of individuals engage in grooming behavior. 
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relevant blood parameters. We report the absolute count of white blood 
cells (WBC x 106/mL), red blood cells (RBC x 109/mL) and platelets (PLT 
x 106/mL). Differentiation between specific types of white blood cells (e. 
g. monocytes, lymphocytes, neutrophils) was not possible. 

Liver and spleen weights were obtained from 128 animals (85 fe
males, 43 males) across the three behavioral groups. CBC data was ob
tained from 83 individuals (55 females, 28 males) belonging to groups S 
and KK. Sampling protocols including the collection of blood measures 
were added after 2016, thus one entire social group (HH), which was 
removed in 2016, did not have blood measures. Only sixty-nine in
dividuals in total (45 females, 24 males) had both types of data 
collected. To maximize our sample size and power for each analysis, we 
ran separate analyses for the organ weights and for the CBC data. 

2.6. Statistical analyses 

All statistical analyses were done in R version 4.0.3 [42]. To test for 
associations between social integration and social status with organ 
weights and with CBC, we opted for a Bayesian approach with Markov 
chain Monte Carlo simulations (MCMCglmm R package [43]), which 
allowed us to run multivariate (i.e., multiple-response) linear mixed 
models. Before fitting our models, we identified outliers for our immu
nity measures by computing the Mahalanobis distance for each dataset, 
which helps to identify outliers in more than one dimension [44]. In
dividuals that were significantly (p < 0.01) isolated in the multivariate 
space were removed. This resulted in eight animals (3 males, 5 females) 
being removed from the organ weight data and two females from the 
CBC data. 

To test if social status and social integration predict organ sizes, we 
ran two bivariate models with spleen and liver size as response vari
ables. Model 1 included grooming degree as measure of social integra
tion and rank as a measure of social status. Model 2 included eigenvector 
centrality, as a measure of social integration, and rank. We expected 
organ sizes to vary with body size, thus body mass was added to the 
models to control for allometry [45]. Additionally, we included a 
quadratic term for age to control for a possible non-linear relationship 
between age and our immunity parameters. Behavioral group and sex 
were also included as fixed effects. 

To assess whether social status and social integration influenced 
activation of the immune system we ran two multivariate models with 
the absolute count of red blood cells, white blood cells, and platelets as 
response variables. The model structure was similar to the liver and 
spleen models, where grooming degree and rank were included as pre
dictors for one model and eigenvector centrality and rank as predictors 
for the other. In both of these models we controlled for sex, behavioral 
group, body mass and age by including them as fixed effects. 

In all of our models, we included social status and social integration 
together because their separate effects are not easily distinguishable in 
rhesus macaques [12,33] and not necessarily correlated (Fig. S3). We 
included animal identity as a covariate in all the models, to account for 
the non-independence on the response variables obtained from the same 
individual (e.g., spleen and liver weights from the same animal). We 
explored interaction terms between all predictors and retained them 
only if statistically significant to preserve statistical power. Details for all 
the models can be found in Table 1. 

To build our models, first, we z-scored all continuous predictors and 
response variables in both datasets to improve model fit and to have a 
direct estimate of effect size from the regression coefficients [46]. Then, 
we fit multivariate models with Gaussian distributions. We used weakly 
informative priors for variance components, with degree of belief equal 
to 2 for random effects fitted to organ weights or 3 for random effects 
fitted to CBC. Given the absence of repeated measures for the same trait 
across individuals, the residual (‘within-individual’) variance was not 
estimated and fixed to 0.0001 for all the models [47]. For all the models 
we ran 300,000 iterations, dropping the first 2000 iterations and 
recording every 100th iteration. We assessed the goodness of fit of our 

models by checking changes in the estimates of fixed effects using 
different priors, examining the variance component plots, the levels of 
autocorrelation (< 0.1 for each run) and the effective sample size (>
2000 per variable)[46,47]. To estimate the covariance between 
response variables, we fit the models by allowing free variation in the 
estimated variances. We determined the inter-individual correlation 
between response variables by dividing the corresponding covariance by 
the product of the square root of their variances [47]. We reported 
correlation coefficients and credible intervals (CI) for variance compo
nents and posterior means with CI for regression estimates. 

All density plots were generated using the supplementary R-code 
shared by Timothee Bonnet [48]. We used the open source software 
Gephi [49] to plot the social networks and Inkscape v1.0.1 for minor 
esthetic modifications of the plots. 

3. Results 

3.1. Sociality and organ sizes 

Liver (mean = 206.5 gr, SD = 59.7) and spleen weight (mean = 7.0 
gr, SD = 2.4) were positively correlated within individuals (r = 0.4, CI =
0.24 - 0.54). Liver size was positively associated to social status (esti
mate = 0.18, CI = 0.019 - 0.34) when controlling for age, sex, body mass 
and group; high ranking animals had bigger livers than low ranking ones 
. However, this association was only significant in the model that 
included our direct measure of social integration; the number of 
grooming social partners (degree) (Table S2). In the main effect model 
including the indirect social integration measure (eigenvector central
ity), the variation explained by rank was not significant (estimate =
0.06, CI = − 0.11 - 0.24; Fig. S2A). Instead, indirect social connections 
had a positive significant relationship with liver size (estimate = 0.19, 
CI = 0.01 – 0.61), probably due to the moderate correlation between 
eigenvector centrality and rank (Fig. S3). The only significant interac
tion term in any of our organ size models was between eigenvector 
centrality and group, showing that the effect of indirect social connec
tions was not the same across groups. Indirect social connections 
significantly predicted bigger livers and spleens in group S (Fig. S2B, 
Table S4). However, a single high-ranking female with an extreme 
eigenvector centrality drove the effects of eigenvector centrality on liver 
and spleen sizes (Fig. S4, Tables S7 and S8), and therefore, also the effect 
of social status on liver size (Table S7). 

Body mass predicted organ sizes; heavier individuals had bigger 
spleens (estimate = 0.59, CI = 0.28 - 0.88) and livers (estimate = 0.38, 
CI = 0.1 - 0.64). Spleen size was not influenced by the age or sex of 
individuals after controlling for body mass. However, when accounting 
for body mass, liver size varied with age (estimate = 0.35, CI = 0.02 - 
0.67); older monkeys had bigger livers for their body size (Fig. 3A). 
Differences in organ size attributed to group were significant for both 
organs; monkeys from group S had bigger livers than monkeys from HH 
(estimate = 0.45, CI = 0.01 - 0.88), while the spleens of monkeys from S 
were smaller than those of HH (estimate = − 0.67, CI = − 1.1 - − 0.2) and 

Table 1 
Specifications for the four multivariate MCMCglmm models.  

Model Dependent 
variables 

Covariate Predictors of 
sociality 

Fixed effects 

Organs 
size 1 

Spleen, Liver Animal 
ID 

Degree, Rank Sex, Group, Body 
mass, Age, Age2 

Organs 
size 2 

Spleen, Liver Animal 
ID 

Eigenvector*, 
Rank 

Sex, Group*, 
Body mass, Age, 
Age2 

Blood 
cells 1 

RBC, WBC, 
PTL 

Animal 
ID 

Degree, Rank Sex, Group, Body 
mass, Age, Age2 

Blood 
cells 2 

RBC, WBC, 
PTL 

Animal 
ID 

Eigenvector, 
Rank 

Sex, Group, Body 
mass, Age, Age2 

* Interaction term included. Age2: quadratic term for age. 
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KK (estimate = − 0.73, CI = − 1.2 - − 0.28; Fig. 4A; Tables S2 and S4). 

3.2. Sociality and blood measures 

There was no significant covariance among red blood cells (mean =
5.1 × 109/mL, SD= 0.68), platelets (mean= 343.2 × 106/mL, SD =
112.2), and white blood cells (mean = 9.86 × 106/mL, SD = 3.04; Table 
S10). Social integration (degree) was negatively associated with the 
number of white blood cells after controlling for sex, group, body mass, 
and age. Individuals with more social partners had fewer WBCs (esti
mate = − 0.27, CI = − 0.5 - − 0.04; Fig. 2). No interaction terms were 
significant. We did not find a significant relationship between social 
integration or social status with other blood cell types. No effect of sex or 
body mass was detected on blood cells counts (Tables S9 and S11). 
However, the number of red blood cells was significantly predicted by an 
individual’s age (estimate = 0.53, CI = 0.21 - 0.87, Fig. 3B) and by the 
quadratic of age (estimate = − 0.005, CI = − 0.008 - − 0.001). RBC 
numbers initially increased with age and then declined in older in
dividuals. There were also significant group differences in blood mea
sures; monkeys belonging to group S had more red blood cells than 
monkeys from KK (estimate = 1.16, CI = 0.73 - 1.58; Fig. 4B). 

4. Discussion 

Here we examined the effect of social status and social integration on 
several markers of immunity and health in a free-ranging population of 
rhesus macaques. After controlling for age, sex, group membership, and 
body mass, we found no evidence that either social status or social 
integration predicted variation in immune organ sizes. However, social 
integration affected one physiological marker of immune activation, the 
absolute count of white blood cells. Individuals with more direct social 
partners had fewer WBCs. Our results add to the growing evidence of a 
relationship between sociality and health, and demonstrate that social 
integration can influence the immunity of animals living outside 
captivity. 

Animals with more social partners had lower counts of white blood 
cells. WBCs are one of the main components of inflammatory processes, 
thus our results are consistent with current literature in humans and 
captive animals linking the social environment with inflammatory 
pathways [12,17]. Our results specifically indicate that social integra
tion could play a role in reducing inflammation markers in animals from 
this population. Previous studies on humans have shown a positive 
correlation between WBCs and several pathologies, such as hyperten
sion, insulin resistance, cardiovascular disease and stress [8,50–52], that 

can eventually be modulated by an individual’s level of social integra
tion [53]. These results together suggest that the low levels of WBCs 
observed in socially integrated animals may be favorable for the in
dividual’s health, supporting previous findings on the beneficial role of 
social partners on the longevity of animals from this population [3,33]. 
Precisely how social integration influences inflammation levels, how
ever, remains an open question. On one side, inflammatory processes 
due to infection or other diseases can increase social withdrawal as part 
of what is known as ‘sickness behavior’ [54]. On the other, positive 
social relationships can reduce stress-induced inflammation via social 
buffering [55,56]. The lack of effect on other blood measures provide 
some evidence that neither recent wounds - which would increase 
platelet count [57]- nor blood borne pathogens - affecting red blood cell 
count [58] - account for our results. However, given the correlational 
nature of our data and the limitation of having a single sample per in
dividual, we cannot establish the directionality of the relationship be
tween sociality and WBCs. 

No effect of social status on white blood cell count was detected. 
Several studies have demonstrated a positive relationship between low 
social status and inflammation levels in humans and animal models [7,9, 
12]. The lack of evidence of an effect in our study can be probably 
attributed to differences in the immune markers examined and the 
population under analysis. Here, we quantified all types of white blood 
cells (e.g. monocytes, lymphocytes, neutrophils) in a single category, 
while other studies have explored specific changes in T-helper lym
phocytes, natural killer cells or in acute-phase proteins [7,12,13]. Dif
ferences in the immune role of the distinct populations of white blood 
cells could account for the lack of effect of social status on inflammation. 
Alternatively, previous studies showing an effect of social status on 
inflammation have been done in captive animals or WEIRD societies, 
where individuals have readily available access to medical health care. 
In such a context it is likely that inflammatory processes are mostly 
driven by psychosocial stress [11,59], in contrast to more naturalistic 
settings like Cayo Santiago, where parasites may play an important role 
and differences in stress susceptibility explained by social status alone 
were not found [20,37]. 

We found no evidence that social status or social integration are 
correlated with immune organ sizes at the population level. Only a 
single high ranking female showed an effect of indirect social connec
tions on the size of both liver and spleen. Literature linking sociality to 
these markers of immunity is scarce and inconsistent. In humans, 
morphological changes in spleen and liver size as a consequence of 
infection have been described [25,26,60], yet no relationship with so
ciality has been explored to our knowledge. An association between 
social status and spleen size was found in a study of captive Brandt’s 
voles, which was attributed to higher immune function in low ranking 
animals [61]. Our results in individual rhesus macaques showed no 
relationship between immune organ sizes and sociality. Although it has 
been shown that socially-integrated individuals [62] and those of higher 
social status [63,64] are typically at higher risk of acquiring socially 
transmitted parasites, we did not find any evidence to support this 
relationship in the Cayo Santiago population. Alternatively, it is possible 
that liver and spleen size are not good markers of socially induced 
changes in immune function. 

Individual attributes contributed to the variation in immunity 
markers in this study. As expected, liver and spleen size correlated 
positively with an individual’s body mass. The variation of organ size 
relative to body size has been frequently documented in primates and 
other mammals [65]. Similarly, we expected that organ size would also 
be influenced by an individual’s age [66]. Yet, this was only the case for 
the liver but not the spleen. One possible explanation is that compared to 
the liver, spleen size may be more susceptible to rapid changes in 
environmental factors such as parasite exposure [24], while changes in 
liver size could also reflect differences in metabolic status with age [67]. 
Despite potential differences in how sensitive to change spleen and liver 
sizes may be, the size of these organs did covary among individual 

Fig. 2. Posterior distributions from the MCMC models for the effect of sociality 
on blood cells. Statistically significant effects are indicated by p-MCMC values. 
Sex effect considered females as the intercept. WBC: white blood cells, RBC: red 
blood cells, PTL: platelets. 
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rhesus macaques, providing some support to their coordinated role in 
immune function [68,69]. Of all individual attributes examined, only 
age predicted blood cell count. RBC initially increased with age, fol
lowed by a reduction in older animals. Anemia (i.e., reduction in RBC) 
has been reported previously in elderly humans [70]. Our results may 
therefore reflect immuno-senescence in the older monkeys of this 
population. 

We also found variation at the group level. Monkeys from group S 
significantly differed from monkeys from the other two groups, having 
bigger livers than HH, and smaller spleens than HH and KK. Addition
ally, S individuals had higher RBC counts in relation to KK monkeys. The 
interpretation of these differences is not straightforward as they could be 
related to intrinsic properties of each group, but also to the impact of 
Hurricane Maria on Cayo Santiago island [71], and consequently, on the 
social dynamics [19] and/or health of the individuals. While group HH 
was removed prior to the Hurricane, group KK was sampled 1 year after 
the storm and group S sampled 2 years after. Differences in the size of 
the liver in monkeys from this population could therefore reflect a 
delayed effect of the hurricane on the immune function [23] or meta
bolism [67] of these animals. However, the smaller spleens of monkeys 
from group S may also suggest that localized group-level events may 

account for these findings. In this regard, we have anecdotal information 
on the social hierarchy between groups. Among the three groups, S 
seemed to be the highest ranking and HH the lowest, placing individuals 
from S in a privileged spot for accessing resources that could contribute 
to differences in nutritional and metabolic status. 

In sum, the results of our study provide the first evidence from free- 
ranging primates of variation in physiological measures of immunity 
with an individual’s level of social integration. Our findings reinforce 
prior evidence from humans and captive model organisms showing that 
one way the social environment can affect health is via the immune 
system. 
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Fig. 3. Posterior distributions from the MCMC models for the effect of individual attributes on A) organ sizes and B) blood cells. Statistically significant effects are 
indicated by p-MCMC values. Sex effect considered females as the intercept. Only results from model 1 are plotted, but results of model 2 are qualitatively similar. 
WBC: white blood cells, RBC: red blood cells, PTL: platelets. 

Fig. 4. Differences between groups in standardized (z-scored): A) organ sizes and B) blood cells. Statistically significant effects are indicated by p-MCMC values. 
WBC: white blood cells, RBC: red blood cells, PTL: platelets. 
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