36 research outputs found

    Gratitude and hospitality: Tamil refugee employment in London and the conditional nature of integration

    Get PDF
    Healy, R. L. 2014. The definitive, peer-reviewed and edited version of this article is published in Environment and Planning A, 2014, 46(3), pp. 614-628, http:dx/doi.org/10.1068/a4655The policy of integration attempts to address different elements of exclusion, yet relatively little research has considered what integration means to the refugees themselves. This paper explores one key area for supporting integration: employment.ESRC PTA-030-2005-0082

    Differential proteomic response of Sydney rock oysters (Saccostrea glomerata) to prolonged environmental stress

    No full text
    Exposure to prolonged environmental stress can have impacts on the cellular homeostasis of aquatic organisms. The current study employed two-dimensional electrophoresis (2-DE) to test whether exposure to impaired water quality conditions in the Sydney Harbour estuary has significantly altered the proteomes of the resident Sydney rock oyster (Saccostrea glomerata). Adult S. glomerata were sampled from four bays in the estuary. Each bay consisted of a “high-impact” site adjacent to point sources of chemical contamination (e.g., storm drains/canals or legacy hotspots) and a “low-impact” site located ~5 km away from point sources. A mixture of environmental stressors differed significantly between high- and low-impact sites. Specifically, PAHs, PCBs, tributyltin, Pb, and Zn were significantly elevated in oyster tissues from high-impact sites, together with depleted dissolved oxygen and low pH in the water column. A 2-DE proteomics analysis subsequently identified 238 protein spots across 24 2-DE gels, of which 27–50 spots differed significantly in relative intensity between high- and low-impact sites per bay. Twenty-five percent of the differential spots were identified in more than one bay. The identities of 80 protein spots were determined by mass spectrometry. HSP 70, PPIB, and radixin were the three most highly expressed differential proteins. Despite the largely unique proteomes evident in each bay, functional annotations revealed that half of the differentially expressed proteins fell into just two subcellular functional categories—energy metabolism and the cytoskeleton. These findings provide a framework to further investigate adaptation of cellular mechanisms to prolonged stress in S. glomerata.10 page(s

    Rapid transcriptional acclimation following transgenerational exposure of oysters to ocean acidification

    No full text
    Marine organisms need to adapt in order to cope with the adverse effects of ocean acidification and warming. Transgenerational exposure to CO2â‚‚ stress has been shown to enhance resilience to ocean acidification in offspring from a number of species. However, the molecular basis underlying such adaptive responses is currently unknown. Here, we compared the transcriptional profiles of two genetically distinct oyster breeding lines following transgenerational exposure to elevated COâ‚‚ in order to explore the molecular basis of acclimation or adaptation to ocean acidification in these organisms. The expression of key target genes associated with antioxidant defence, metabolism and the cytoskeleton was assessed in oysters exposed to elevated COâ‚‚ over three consecutive generations. This set of target genes was chosen specifically to test whether altered responsiveness of intracellular stress mechanisms contributes to the differential acclimation of oyster populations to climate stressors. Transgenerational exposure to elevated COâ‚‚ resulted in changes to both basal and inducible expression of those key target genes (e.g. ecSOD, catalase and peroxiredoxin 6), particularly in oysters derived from the disease-resistant, fast-growing B2 line. Exposure to COâ‚‚ stress over consecutive generations produced opposite and less evident effects on transcription in a second population that was derived from wild-type (nonselected) oysters. The analysis of key target genes revealed that the acute responses of oysters to COâ‚‚ stress appear to be affected by population-specific genetic and/or phenotypic traits and by the COâ‚‚ conditions to which their parents had been exposed. This supports the contention that the capacity for heritable change in response to ocean acidification varies between oyster breeding lines and is mediated by parental conditioning.14 page(s

    The Biology of environmental stress : molecular biomarkers in Sydney rock oysters (Saccostrea glomerata)

    No full text
    This review describes our recent work on environmental stress in Sydney rock oysters, focusing on the identification of molecular biomarkers for ecotoxicological analysis. We begin by describing the environmental pressures facing coastal estuaries in Australia, with particular reference to Sydney Harbour. After providing that context, we summarise our transcriptional and proteomic analyses of Sydney rock oysters responding to chemical contamination and other forms of environmental stress. This work has shown that the intracellular processes of oysters are highly responsive to environmental threats. Our data agree with the broader literature, which suggests that there is a highly conserved intracellular stress response in oysters involving a limited number of biological processes. We conclude that many effective molecular markers for environmental biomonitoring are likely to lie within these biological pathways. Correction can be found in Environmental science : processes and impacts, Vol. 18. p. 1359, doi: http://dx.doi.org/10.1039/C6EM90036D11 page(s

    Meta-Analysis of Studies Using Suppression Subtractive Hybridization and Microarrays to Investigate the Effects of Environmental Stress on Gene Transcription in Oysters

    No full text
    <div><p>Many microarray and suppression subtractive hybridization (SSH) studies have analyzed the effects of environmental stress on gene transcription in marine species. However, there have been no unifying analyses of these data to identify common stress response pathways. To address this shortfall, we conducted a meta-analysis of 14 studies that investigated the effects of different environmental stressors on gene expression in oysters. The stressors tested included chemical contamination, hypoxia and infection, as well as extremes of temperature, pH and turbidity. We found that the expression of over 400 genes in a range of oyster species changed significantly after exposure to environmental stress. A repeating pattern was evident in these transcriptional responses, regardless of the type of stress applied. Many of the genes that responded to environmental stress encoded proteins involved in translation and protein processing (including molecular chaperones), the mitochondrial electron transport chain, anti-oxidant activity and the cytoskeleton. In light of these findings, we put forward a consensus model of sub-cellular stress responses in oysters.</p></div
    corecore