275 research outputs found

    Maintenance of antifracture efficacy over 10 years with strontium ranelate in postmenopausal osteoporosis

    Get PDF
    In an open-label extension study, BMD increased continuously with strontium ranelate over 10 years in osteoporotic women (P < 0.01). Vertebral and nonvertebral fracture incidence was lower between 5 and 10 years than in a matched placebo group over 5 years (P < 0.05). Strontium ranelate's antifracture efficacy appears to be maintained long term. INTRODUCTION: Strontium ranelate has proven efficacy against vertebral and nonvertebral fractures, including hip, over 5 years in postmenopausal osteoporosis. We explored long-term efficacy and safety of strontium ranelate over 10 years. METHODS: Postmenopausal osteoporotic women participating in the double-blind, placebo-controlled phase 3 studies SOTI and TROPOS to 5 years were invited to enter a 5-year open-label extension, during which they received strontium ranelate 2 g/day (n = 237, 10-year population). Bone mineral density (BMD) and fracture incidence were recorded, and FRAX(R) scores were calculated. The effect of strontium ranelate on fracture incidence was evaluated by comparison with a FRAX(R)-matched placebo group identified in the TROPOS placebo arm. RESULTS: The patients in the 10-year population had baseline characteristics comparable to those of the total SOTI/TROPOS population. Over 10 years, lumbar BMD increased continuously and significantly (P < 0.01 versus previous year) with 34.5 +/- 20.2% relative change from baseline to 10 years. The incidence of vertebral and nonvertebral fracture with strontium ranelate in the 10-year population in years 6 to 10 was comparable to the incidence between years 0 and 5, but was significantly lower than the incidence observed in the FRAX(R)-matched placebo group over 5 years (P < 0.05); relative risk reductions for vertebral and nonvertebral fractures were 35% and 38%, respectively. Strontium ranelate was safe and well tolerated over 10 years. CONCLUSIONS: Long-term treatment with strontium ranelate is associated with sustained increases in BMD over 10 years, with a good safety profile. Our results also support the maintenance of antifracture efficacy over 10 years with strontium ranelate

    Genome-Wide Association Meta-Analysis of Cortical Bone Mineral Density Unravels Allelic Heterogeneity at the RANKL Locus and Potential Pleiotropic Effects on Bone

    Get PDF
    Previous genome-wide association (GWA) studies have identified SNPs associated with areal bone mineral density (aBMD). However, this measure is influenced by several different skeletal parameters, such as periosteal expansion, cortical bone mineral density (BMDC) cortical thickness, trabecular number, and trabecular thickness, which may be under distinct biological and genetic control. We have carried out a GWA and replication study of BMDC, as measured by peripheral quantitative computed tomography (pQCT), a more homogenous and valid measure of actual volumetric bone density. After initial GWA meta-analysis of two cohorts (ALSPAC n = 999, aged ∼15 years and GOOD n = 935, aged ∼19 years), we attempted to replicate the BMDC associations that had p<1×10−5 in an independent sample of ALSPAC children (n = 2803) and in a cohort of elderly men (MrOS Sweden, n = 1052). The rs1021188 SNP (near RANKL) was associated with BMDC in all cohorts (overall p = 2×10−14, n = 5739). Each minor allele was associated with a decrease in BMDC of ∼0.14SD. There was also evidence for an interaction between this variant and sex (p = 0.01), with a stronger effect in males than females (at age 15, males −6.77mg/cm3 per C allele, p = 2×10−6; females −2.79 mg/cm3 per C allele, p = 0.004). Furthermore, in a preliminary analysis, the rs1021188 minor C allele was associated with higher circulating levels of sRANKL (p<0.005). We show this variant to be independent from the previously aBMD associated SNP (rs9594738) and possibly from a third variant in the same RANKL region, which demonstrates important allelic heterogeneity at this locus. Associations with skeletal parameters reflecting bone dimensions were either not found or were much less pronounced. This finding implicates RANKL as a locus containing variation associated with volumetric bone density and provides further insight into the mechanism by which the RANK/RANKL/OPG pathway may be involved in skeletal development

    Non-Small Cell Lung Carcinoma Cell Motility, Rac Activation and Metastatic Dissemination Are Mediated by Protein Kinase C Epsilon

    Get PDF
    Background: Protein kinase C (PKC) e, a key signaling transducer implicated in mitogenesis, survival, and cancer progression, is overexpressed in human primary non-small cell lung cancer (NSCLC). The role of PKCe in lung cancer metastasis has not yet been established. Principal Findings: Here we show that RNAi-mediated knockdown of PKCe in H358, H1299, H322, and A549 NSCLC impairs activation of the small GTPase Rac1 in response to phorbol 12-myristate 13-acetate (PMA), serum, or epidermal growth factor (EGF). PKCe depletion markedly impaired the ability of NSCLC cells to form membrane ruffles and migrate. Similar results were observed by pharmacological inhibition of PKCe with eV1-2, a specific PKCe inhibitor. PKCe was also required for invasiveness of NSCLC cells and modulated the secretion of extracellular matrix proteases and protease inhibitors. Finally, we found that PKCe-depleted NSCLC cells fail to disseminate to lungs in a mouse model of metastasis. Conclusions: Our results implicate PKCe as a key mediator of Rac signaling and motility of lung cancer cells, highlighting its potential as a therapeutic target

    Hair Cortisol in Twins: Heritability and Genetic Overlap with Psychological Variables and Stress-System Genes

    Get PDF
    Hair cortisol concentration (HCC) is a promising measure of long-Term hypothalamus-pituitary-Adrenal (HPA) axis activity. Previous research has suggested an association between HCC and psychological variables, and initial studies of inter-individual variance in HCC have implicated genetic factors. However, whether HCC and psychological variables share genetic risk factors remains unclear. The aims of the present twin study were to: (i) assess the heritability of HCC; (ii) estimate the phenotypic and genetic correlation between HPA axis activity and the psychological variables perceived stress, depressive symptoms, and neuroticism; using formal genetic twin models and molecular genetic methods, i.e. polygenic risk scores (PRS). HCC was measured in 671 adolescents and young adults. These included 115 monozygotic and 183 dizygotic twin-pairs. For 432 subjects PRS scores for plasma cortisol, major depression, and neuroticism were calculated using data from large genome wide association studies. The twin model revealed a heritability for HCC of 72%. No significant phenotypic or genetic correlation was found between HCC and the three psychological variables of interest. PRS did not explain variance in HCC. The present data suggest that HCC is highly heritable. However, the data do not support a strong biological link between HCC and any of the investigated psychological variables

    Calcium Dependent CAMTA1 in Adult Stem Cell Commitment to a Myocardial Lineage

    Get PDF
    The phenotype of somatic cells has recently been found to be reversible. Direct reprogramming of one cell type into another has been achieved with transduction and over expression of exogenous defined transcription factors emphasizing their role in specifying cell fate. To discover early and novel endogenous transcription factors that may have a role in adult-derived stem cell acquisition of a cardiomyocyte phenotype, mesenchymal stem cells from human and mouse bone marrow and rat liver were co-cultured with neonatal cardiomyocytes as an in vitro cardiogenic microenvironment. Cell-cell communications develop between the two cell types as early as 24 hrs in co-culture and are required for elaboration of a myocardial phenotype in the stem cells 8-16 days later. These intercellular communications are associated with novel Ca(2+) oscillations in the stem cells that are synchronous with the Ca(2+) transients in adjacent cardiomyocytes and are detected in the stem cells as early as 24-48 hrs in co-culture. Early and significant up-regulation of Ca(2+)-dependent effectors, CAMTA1 and RCAN1 ensues before a myocardial program is activated. CAMTA1 loss-of-function minimizes the activation of the cardiac gene program in the stem cells. While the expression of RCAN1 suggests involvement of the well-characterized calcineurin-NFAT pathway as a response to a Ca(2+) signal, the CAMTA1 up-regulated expression as a response to such a signal in the stem cells was unknown. Cell-cell communications between the stem cells and adjacent cardiomyocytes induce Ca(2+) signals that activate a myocardial gene program in the stem cells via a novel and early Ca(2+)-dependent intermediate, up-regulation of CAMTA1

    Inducible cAMP Early Repressor (ICER) and Brain Functions

    Get PDF
    The inducible cAMP early repressor (ICER) is an endogenous repressor of cAMP-responsive element (CRE)-mediated gene transcription and belongs to the CRE-binding protein (CREB)/CRE modulator (CREM)/activating transcription factor 1 (ATF-1) gene family. ICER plays an important role in regulating the neuroendocrine system and the circadian rhythm. Other aspects of ICER function have recently attracted heightened attention. Being a natural inducible CREB antagonist, and more broadly, an inducible repressor of CRE-mediated gene transcription, ICER regulates long-lasting plastic changes that occur in the brain in response to incoming stimulation. This review will bring together data on ICER and its functions in the brain, with a special emphasis on recent findings highlighting the involvement of ICER in the regulation of long-term plasticity underlying learning and memory
    corecore