62 research outputs found

    Acute knockdown of Kv4.1 regulates repetitive firing rates and clock gene expression in the suprachiasmatic nucleus and daily rhythms in locomotor behavior

    Get PDF
    AbstractRapidly activating and inactivating A-type K+currents (IA) encoded by Kv4.2 and Kv4.3 pore-forming (α) subunits of the Kv4 subfamily are key regulators of neuronal excitability. Previous studies have suggested a role for Kv4.1 α-subunits in regulating the firing properties of mouse suprachiasmatic nucleus (SCN) neurons. To test this, we utilized an RNA-interference strategy to knockdown Kv4.1, acutely and selectively, in the SCN. Current-clamp recordings revealed that thein vivoknockdown of Kv4.1 significantly (p&lt; 0.0001) increased mean ± SEM repetitive firing rates in SCN neurons during the day (6.4 ± 0.5 Hz) and at night (4.3 ± 0.6 Hz), compared with nontargeted shRNA-expressing SCN neurons (day: 3.1 ± 0.5 Hz; night: 1.6 ± 0.3 Hz). IAwas also significantly (p&lt; 0.05) reduced in Kv4.1-targeted shRNA-expressing SCN neurons (day: 80.3 ± 11.8 pA/pF; night: 55.3 ± 7.7 pA/pF), compared with nontargeted shRNA-expressing (day: 121.7 ± 10.2 pA/pF; night: 120.6 ± 16.5 pA/pF) SCN neurons. The magnitude of the effect of Kv4.1-targeted shRNA expression on firing rates and IAwas larger at night. In addition, Kv4.1-targeted shRNA expression significantly (p&lt; 0.001) increased mean ± SEM nighttime input resistance (Rin; 2256 ± 166 MΩ), compared to nontargeted shRNA-expressing SCN neurons (1143 ± 93 MΩ). Additional experiments revealed that acute knockdown of Kv4.1 significantly (p&lt; 0.01) shortened, by ∼0.5 h, the circadian period of spontaneous electrical activity, clock gene expression and locomotor activity demonstrating a physiological role for Kv4.1-encoded IAchannels in regulating circadian rhythms in neuronal excitability and behavior.</jats:p

    Modulation of the effects of class Ib antiarrhythmics on cardiac NaV1.5-encoded channels by accessory NaVβ subunits

    Get PDF
    Native myocardial voltage-gated sodium (NaV) channels function in macromolecular complexes comprising a pore-forming (α) subunit and multiple accessory proteins. Here, we investigated the impact of accessory NaVβ1 and NaVβ3 subunits on the functional effects of 2 well-known class Ib antiarrhythmics, lidocaine and ranolazine, on the predominant NaV channel α subunit, NaV1.5, expressed in the mammalian heart. We showed that both drugs stabilized the activated conformation of the voltage sensor of domain-III (DIII-VSD) in NaV1.5. In the presence of NaVβ1, the effect of lidocaine on the DIII-VSD was enhanced, whereas the effect of ranolazine was abolished. Mutating the main class Ib drug-binding site, F1760, affected but did not abolish the modulation of drug block by NaVβ1/β3. Recordings from adult mouse ventricular myocytes demonstrated that loss of Scn1b (NaVβ1) differentially affected the potencies of lidocaine and ranolazine. In vivo experiments revealed distinct ECG responses to i.p. injection of ranolazine or lidocaine in WT and Scn1b-null animals, suggesting that NaVβ1 modulated drug responses at the whole-heart level. In the human heart, we found that SCN1B transcript expression was 3 times higher in the atria than ventricles, differences that could, in combination with inherited or acquired cardiovascular disease, dramatically affect patient response to class Ib antiarrhythmic therapies

    Differential regulation of cardiac sodium channels by intracellular fibroblast growth factors

    Get PDF
    Voltage-gated sodium (NaV) channels are responsible for the initiation and propagation of action potentials. In the heart, the predominant NaV1.5 α subunit is composed of four homologous repeats (I-IV) and forms a macromolecular complex with multiple accessory proteins, including intracellular fibroblast growth factors (iFGF). In spite of high homology, each of the iFGFs, iFGF11-iFGF14, as well as the individual iFGF splice variants, differentially regulates NaV channel gating, and the mechanisms underlying these differential effects remain elusive. Much of the work exploring iFGF regulation of NaV1.5 has been performed in mouse and rat ventricular myocytes in which iFGF13VY is the predominant iFGF expressed, whereas investigation into NaV1.5 regulation by the human heart-dominant iFGF12B is lacking. In this study, we used a mouse model with cardiac-specific Fgf13 deletion to study the consequences of iFGF13VY and iFGF12B expression. We observed distinct effects on the voltage-dependences of activation and inactivation of the sodium currents (INa), as well as on the kinetics of peak INa decay. Results in native myocytes were recapitulated with human NaV1.5 heterologously expressed in Xenopus oocytes, and additional experiments using voltage-clamp fluorometry (VCF) revealed iFGF-specific effects on the activation of the NaV1.5 voltage sensor domain in repeat IV (VSD-IV). iFGF chimeras further unveiled roles for all three iFGF domains (i.e., the N-terminus, core, and C-terminus) on the regulation of VSD-IV, and a slower time domain of inactivation. We present here a novel mechanism of iFGF regulation that is specific to individual iFGF isoforms and that leads to distinct functional effects on NaV channel/current kinetics

    Kv12-encoded K+ channels drive the day-night switch in the repetitive firing rates of SCN neurons

    Get PDF
    Considerable evidence suggests that day-night rhythms in the functional expression of subthreshold potassium (K+) channels regulate daily oscillations in the spontaneous firing rates of neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals. The K+ conductance(s) driving these daily rhythms in the repetitive firing rates of SCN neurons, however, have not been identified. To test the hypothesis that subthreshold Kv12.1/Kv12.2-encoded K+ channels play a role, we obtained current-clamp recordings from SCN neurons in slices prepared from adult mice harboring targeted disruptions in the Kcnh8 (Kv12.1-/-) or Kcnh3 (Kv12.2-/-) locus. We found that mean nighttime repetitive firing rates were higher in Kv12.1-/- and Kv12.2-/- than in wild type (WT), SCN neurons. In marked contrast, mean daytime repetitive firing rates were similar in Kv12.1-/-, Kv12.2-/-, and WT SCN neurons, and the day-night difference in mean repetitive firing rates, a hallmark feature of WT SCN neurons, was eliminated in Kv12.1-/- and Kv12.2-/- SCN neurons. Similar results were obtained with in vivo shRNA-mediated acute knockdown of Kv12.1 or Kv12.2 in adult SCN neurons. Voltage-clamp experiments revealed that Kv12-encoded current densities in WT SCN neurons are higher at night than during the day. In addition, the pharmacological block of Kv12-encoded currents increased the mean repetitive firing rate of nighttime, but not daytime, in WT SCN neurons. Dynamic clamp-mediated subtraction of modeled Kv12-encoded currents also selectively increased the mean repetitive firing rates of nighttime WT SCN neurons. Despite the elimination of the nighttime decrease in the mean repetitive firing rates of SCN neurons, however, locomotor (wheel-running) activity remained rhythmic in Kv12.1-/-, Kv12.2-/-, and Kv12.1-targeted shRNA-expressing, and Kv12.2-targeted shRNA-expressing animals

    Fructose Modulates Cardiomyocyte Excitation-Contraction Coupling and Ca2+ Handling In Vitro

    Get PDF
    BACKGROUND: High dietary fructose has structural and metabolic cardiac impact, but the potential for fructose to exert direct myocardial action is uncertain. Cardiomyocyte functional responsiveness to fructose, and capacity to transport fructose has not been previously demonstrated. OBJECTIVE: The aim of the present study was to seek evidence of fructose-induced modulation of cardiomyocyte excitation-contraction coupling in an acute, in vitro setting. METHODS AND RESULTS: The functional effects of fructose on isolated adult rat cardiomyocyte contractility and Ca²⁺ handling were evaluated under physiological conditions (37°C, 2 mM Ca²⁺, HEPES buffer, 4 Hz stimulation) using video edge detection and microfluorimetry (Fura2) methods. Compared with control glucose (11 mM) superfusate, 2-deoxyglucose (2 DG, 11 mM) substitution prolonged both the contraction and relaxation phases of the twitch (by 16 and 36% respectively, p<0.05) and this effect was completely abrogated with fructose supplementation (11 mM). Similarly, fructose prevented the Ca²⁺ transient delay induced by exposure to 2 DG (time to peak Ca²⁺ transient: 2 DG: 29.0±2.1 ms vs. glucose: 23.6±1.1 ms vs. fructose +2 DG: 23.7±1.0 ms; p<0.05). The presence of the fructose transporter, GLUT5 (Slc2a5) was demonstrated in ventricular cardiomyocytes using real time RT-PCR and this was confirmed by conventional RT-PCR. CONCLUSION: This is the first demonstration of an acute influence of fructose on cardiomyocyte excitation-contraction coupling. The findings indicate cardiomyocyte capacity to transport and functionally utilize exogenously supplied fructose. This study provides the impetus for future research directed towards characterizing myocardial fructose metabolism and understanding how long term high fructose intake may contribute to modulating cardiac function

    Design, Delivery, Maintenance, and Outcomes of Peer-to-Peer Online Support Groups for People With Chronic Musculoskeletal Disorders: Systematic Review

    Get PDF
    Background: Online support groups (OSGs) are one way for people with chronic diseases, their family or friends, and health professionals to communicate, gain information, and provide social support. As the number of peer-to-peer OSGs for chronic musculoskeletal conditions grows, it is important to gain insight into the different designs of groups available, who is accessing them, if and how they may be effective, and what strategies are being used to implement or increase consumer engagement. Objective: The objectives of this systematic review of people with musculoskeletal conditions were to (1) describe the design features (functions, usage options, moderation, and expert input) of peer-to-peer OSGs, (2) describe the characteristics of the individuals using peer-to-peer OSGs, (3) synthesize the evidence on outcomes of participation, and (4) identify strategies used in the delivery and maintenance of OSGs. Methods: A search comprising terms related to the population (people with musculoskeletal disorders) and the intervention (peer-to-peer OSGs) was conducted in 6 databases. Results were filtered from 1990 (internet inception) to February 2019. Studies identified in the search were screened according to predefined eligibility criteria using a 2-step process. Quantitative studies were appraised by 2 reviewers using the Risk Of Bias In Non-Randomized Studies of Interventions tool. Qualitative studies were appraised by 2 different reviewers using the Critical Appraisal Skills Programme checklist. Extracted data were synthesized narratively. Results: We examined 21 studies with low to moderate risk of bias. Of these studies, 13 studies included OSGs hosted on public platforms, 11 studies examined OSGs that were conducted in English, and 6 studies used moderators or peer leaders to facilitate engagement. Studies either reported the number of OSG members (n=1985 across all studies) or the number of posts (range: 223-200,000). The majority of OSG members were females who were not full-time employees and with varied levels of education. There were no randomized controlled trials measuring the efficacy of OSGs. Qualitative and quantitative studies identified empowerment, social support, self-management behavior, and health literacy as primary constructs to measure OSG efficacy. Neutral or marginal improvement was reported in these constructs. Sharing experiences and a greater level of engagement appeared to have an important influence on OSGs efficacy. The extent to which members posted on the website influenced engagement. Conclusions: Across a diverse range of designs, languages, included features, and delivery platforms, peer-to-peer OSGs for chronic musculoskeletal conditions attract predominantly female participants of all ages and education levels. The level of participation of a member appears to be related to their perceived benefit, health literacy, and empowerment. Future studies are needed to identify which design and maintenance strategies have superior efficacy and whether there are concomitant improvements in health outcomes for people with chronic musculoskeletal conditions resulting from participation in OSGs

    Intra-subject repeatability of in vivo intervertebral motion parameters using quantitative fluoroscopy.

    Get PDF
    Purpose: In vivo quantification of intervertebral motion through imaging has progressed to a point where biomarkers for low back pain are emerging. This makes possible deeper study of the condition’s biometrics. However, the measurement of change over time involves error. The purpose of this prospective investigation is to determine the intra-subject repeatability of six in vivo intervertebral motion parameters using quantitative fluoroscopy. Methods: Intra-subject reliability (ICC) and minimal detectable change (MDC) of baseline to 6-week follow-up measurements were calculated for 6 lumbar spine intervertebral motion parameters in 109 healthy volunteers. A standardised quantitative fluoroscopy (QF) protocol was used to provide measurements in the coronal and sagittal planes using both passive recumbent and active weight bearing motion. Parameters were: intervertebral range of motion (IV-RoM), laxity, motion sharing inequality (MSI), motion sharing variability (MSV), flexion translation, and anterior disc height change during flexion. Results: The best overall intra subject reliability (ICC) and agreement (MDT) were for disc height (ICC 0.89, MDC 43%) and IV-RoM (ICC 0.96, MDC 60%) and the worst for MSV (ICC 0.04, MCD 408%). Laxity, MSI and translation had acceptable reliability (most ICCs >0.60), but not agreement (MDC >85%). Conclusion: Disc height and IV-RoM measurement using QF could be considered for randomised trials while laxity, MSI and translation could be considered for moderators, correlates or mediators of patient reported outcomes. MSV had both poor reliability and agreement over 6 weeks

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Emergence of a multidrug-resistant and virulent Streptococcus pneumoniae lineage mediates serotype replacement after PCV13: an international whole-genome sequencing study.

    Get PDF
    BACKGROUND Serotype 24F is one of the emerging pneumococcal serotypes after the introduction of pneumococcal conjugate vaccine (PCV). We aimed to identify lineages driving the increase of serotype 24F in France and place these findings into a global context. METHODS Whole-genome sequencing was performed on a collection of serotype 24F pneumococci from asymptomatic colonisation (n=229) and invasive disease (n=190) isolates among individuals younger than 18 years in France, from 2003 to 2018. To provide a global context, we included an additional collection of 24F isolates in the Global Pneumococcal Sequencing (GPS) project database for analysis. A Global Pneumococcal Sequence Cluster (GPSC) and a clonal complex (CC) were assigned to each genome. Phylogenetic, evolutionary, and spatiotemporal analysis were conducted using the same 24F collection and supplemented with a global collection of genomes belonging to the lineage of interest from the GPS project database (n=25 590). FINDINGS Serotype 24F was identified in numerous countries mainly due to the clonal spread of three lineages: GPSC10 (CC230), GPSC16 (CC156), and GPSC206 (CC7701). GPSC10 was the only multidrug-resistant lineage. GPSC10 drove the increase in 24F in France and had high invasive disease potential. The international dataset of GPSC10 (n=888) revealed that this lineage expressed 16 other serotypes, with only six included in 13-valent PCV (PCV13). All serotype 24F isolates were clustered in a single clade within the GPSC10 phylogeny and long-range transmissions were detected from Europe to other continents. Spatiotemporal analysis showed GPSC10-24F took 3-5 years to spread across France and a rapid change of serotype composition from PCV13 serotype 19A to 24F during the introduction of PCV13 was observed in neighbouring country Spain. INTERPRETATION Our work reveals that GPSC10 alone is a challenge for serotype-based vaccine strategy. More systematic investigation to identify lineages like GPSC10 will better inform and improve next-generation preventive strategies against pneumococcal diseases
    corecore