229 research outputs found

    Nonlinear atom-optical delta-kicked harmonic oscillator using a Bose-Einstein condensate

    Full text link
    We experimentally investigate the atom-optical delta-kicked harmonic oscillator for the case of nonlinearity due to collisional interactions present in a Bose-Einstein condensate. A Bose condensate of rubidium atoms tightly confined in a static harmonic magnetic trap is exposed to a one-dimensional optical standing-wave potential that is pulsed on periodically. We focus on the quantum anti-resonance case for which the classical periodic behavior is simple and well understood. We show that after a small number of kicks the dynamics is dominated by dephasing of matter wave interference due to the finite width of the condensate's initial momentum distribution. In addition, we demonstrate that the nonlinear mean-field interaction in a typical harmonically confined Bose condensate is not sufficient to give rise to chaotic behavior.Comment: 4 pages, 3 figure

    Transient Catalytic Combustor Model With Detailed Gas and Surface Chemistry

    Get PDF
    In this work, we numerically investigate the transient combustion of a premixed gas mixture in a narrow, perfectly-insulated, catalytic channel which can represent an interior channel of a catalytic monolith. The model assumes a quasi-steady gas-phase and a transient, thermally thin solid phase. The gas phase is one-dimensional, but it does account for heat and mass transfer in a direction perpendicular to the flow via appropriate heat and mass transfer coefficients. The model neglects axial conduction in both the gas and in the solid. The model includes both detailed gas-phase reactions and catalytic surface reactions. The reactants modeled so far include lean mixtures of dry CO and CO/H2 mixtures, with pure oxygen as the oxidizer. The results include transient computations of light-off and system response to inlet condition variations. In some cases, the model predicts two different steady-state solutions depending on whether the channel is initially hot or cold. Additionally, the model suggests that the catalytic ignition of CO/O2 mixtures is extremely sensitive to small variations of inlet equivalence ratios and parts per million levels of H2

    Solving Mechanics Problems Using Meta-Level Inference

    Get PDF
    In this paper we shall describe a program (MECHO), written in Prolog[14], which solves a wide range of mechanics problems from statements in both predicate calculus and English. Mecho uses the technique of meta-level inference to control search in natural language understanding, common sense inference, model formation and algebraic manipulation. We argue that this is a powerful technique for controlling search while retaining the modularity of declarative knowledge representations

    Two-dimensional loosely and tightly bound solitons in optical lattices and inverted traps

    Full text link
    We study the dynamics of nonlinear localized excitations (solitons) in two-dimensional (2D) Bose-Einstein condensates (BECs) with repulsive interactions, loaded into an optical lattice (OL), which is combined with an external parabolic potential. First, we demonstrate analytically that a broad (loosely bound, LB) soliton state, based on a 2D Bloch function near the edge of the Brillouin zone (BZ), has a negative effective mass (while the mass of a localized state is positive near the BZ center). The negative-mass soliton cannot be held by the usual trap, but it is safely confined by an inverted parabolic potential (anti-trap). Direct simulations demonstrate that the LB solitons (including the ones with intrinsic vorticity) are stable and can freely move on top of the OL. The frequency of elliptic motion of the LB-soliton's center in the anti-trapping potential is very close to the analytical prediction which treats the solition as a quasi-particle. In addition, the LB soliton of the vortex type features real rotation around its center. We also find an abrupt transition, which occurs with the increase of the number of atoms, from the negative-mass LB states to tightly bound (TB) solitons. An estimate demonstrates that, for the zero-vorticity states, the transition occurs when the number of atoms attains a critical number N=10^3, while for the vortex the transition takes place at N=5x10^3 atoms. The positive-mass LB states constructed near the BZ center (including vortices) can move freely too. The effects predicted for BECs also apply to optical spatial solitons in bulk photonic crystals.Comment: 17 pages, 12 figure

    Automated data analysis to rapidly derive and communicate ecological insights from satellite-tag data: A case study of reintroduced red kites

    Get PDF
    Analysis of satellite-telemetry data mostly occurs long after it has been collected, due to the time and effort needed to collate and interpret such material. Such delayed reporting does reduce the usefulness of such data for nature conservation when timely information about animal movements is required. To counter this problem we present a novel approach which combines automated analysis of satellite-telemetry data with rapid communication of insights derived from such data. A relatively simple algorithm (comprising speed of movement and turning angle calculated from fixes), allowed instantaneous detection of excursions away from settlement areas and automated calculation of home ranges on the remaining data Automating the detection of both excursions and home range calculations enabled us to disseminate ecological insights from satellite-tag data instantaneously through a dedicated web portal to inform conservationists and wider audiences. We recommend automated analysis, interpretation and communication of satellite tag and other ecological data to advance nature conservation research and practice

    High-fidelity quantum driving

    Full text link
    The ability to accurately control a quantum system is a fundamental requirement in many areas of modern science such as quantum information processing and the coherent manipulation of molecular systems. It is usually necessary to realize these quantum manipulations in the shortest possible time in order to minimize decoherence, and with a large stability against fluctuations of the control parameters. While optimizing a protocol for speed leads to a natural lower bound in the form of the quantum speed limit rooted in the Heisenberg uncertainty principle, stability against parameter variations typically requires adiabatic following of the system. The ultimate goal in quantum control is to prepare a desired state with 100% fidelity. Here we experimentally implement optimal control schemes that achieve nearly perfect fidelity for a two-level quantum system realized with Bose-Einstein condensates in optical lattices. By suitably tailoring the time-dependence of the system's parameters, we transform an initial quantum state into a desired final state through a short-cut protocol reaching the maximum speed compatible with the laws of quantum mechanics. In the opposite limit we implement the recently proposed transitionless superadiabatic protocols, in which the system perfectly follows the instantaneous adiabatic ground state. We demonstrate that superadiabatic protocols are extremely robust against parameter variations, making them useful for practical applications.Comment: 17 pages, 4 figure
    corecore