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advances in natural language processing (eg
[18]) in order to study ©parsing and problem
solving In a domain which requires
sophisticated knowledge about the world. The

domain we have been working in is that of
mechanics problems, which deal with idealised
objects such as smooth planes, light
inextensible strings, frictionless pulleys etc.
The idealised nature of this domain made it
feasible to consider building an expert
inferential system which would be able to cope
with a wide range of problems. To date, our
program has tackled problems in the areas of:
pulley problems, statics problems, motion on
smooth complex paths and motion under constant
acceleration. Our intention is to continue
expanding this in order to force generality
into our solutions. In recent years a lot of
similar work has been N progress on
Physics-type domains such as ours. (eg [13],
[7], [15], [11] ). We have been concerned to
adopt methods developed by these workers into
Mecho, and to solve mechanics problems tackled
by them.

2. Description of the Program

The block diagram (fig 1) gives a very
general overview of the structure of the MECHO

program. Each Dblock represents a closely
related collection of Prolog clauses
(procedures), the arrows between blocks


https://core.ac.uk/display/429717578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Intermediate
SYNTAX SEMANTICS Data-Base

Handler

DATA
BASE

PROBLEM

SOLVING

MECHO

Data Base
Manager/

Inference
Control

' Unit Conversion

ALGEBRA
PACKAGE

Fig 1 : Program Block Structure.

TEXT

{'Dictionary
Grammar Rules

SYNTACTIC
STRUCTURE

Reference
Filtering

iSemantic Structures
Direct

ASSERTIONS
Input

Schemata

Meta-level Information
Inference Rules
Physical Formulae

EQUATIONS/
INEQUALITIES

(Rewrite Rules

NUMERIC/
SYMBOLIC SOLUTION

Fig 2 : Representation Structures

1018



indicate invocation/communication links. (For
practical reasons MECHO is split into three
separate modules, but this is irrelevant to the

overall structure). The accompanying diagram
(fig 2) tries to capture the changes in
representation and the various types of
knowledge required during the execution of the
program. The following discussion will
elaborate on these.

Input to the program is in the form of
English text. An example taken from the area

of pulley problems would be:

of mass b and c¢ are
connected by a light string passing
over a smooth pulley. Find the

acceleration of the particle of
mass b."

"Two particles

(1)

(Taken from [10])
The purpose of the natural
to produce a set of
assertions which will

language module is
predicate calculus
enable the problem solver
to solve the problem. This objective of
producing a symbolic representation of the
'meaning' of the problem statement has Dbeen
used by us as a vehicle for exploring
syntax-semantics interaction. The syntactic
parser calls semantic routines as soon as
possible in order to interpret fragments of
text and quickly reject inappropriate syntactic
choices. The work of the syntax routines
divides into clause syntax and phrase syntax.

The purpose of syntactic analysis at the
clause level is to establish clause boundaries
and, within each clause, to prepare the ground
for the semantic analysis of the main verb.
Clause analysis thus involves identifying the
start of new phrases, assigning syntactic roles
to the phrases and performing phrase analysis
to interpret the internal structure of the
phrases. The Internal phrase analysis
typically returns simply a referent (and some
typing information) to the higher levels. This
means that preliminary reference evaluation IS
carried out locally, with the information
conveyed by a phrase being captured In
assertions produced as 'side effects' Dby
semantic routines called during the analysis.
These semantic routines are responsible for
interpreting what it means for a given object
to have a <certain property, and indeed for
checking whether or not it can have the
property. Domain specific information

concerning typing, idealisation and
object-property possibilities is used to answer
these questions. Failure of the semantics
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the
(simple)

invalid. The
shows the kind of

iIndicates that
following

parse IS
example

meta-level structures used in this process.

meaning(light,Object,mass(Object,zero)).

type constraint(light,physobj).

The meaning predicate states that the meaning
of applying the property light to an object, is
that the object has a mass of zero.
type constraint asserts that being a physical
object is a necessary condition to having the
property light.

It is interesting to note that the

declarative assertions which give the meaning
of a phrase can be specified independently of
how they will be used. Meta-level information
concerning the state of the analysis is used to

determine whether they are used to add new
information or to test neccessary constraints
on previous information. (This is basically
the 'given'/'new!’ distinction discussed N
[81]).

One of the aspects of natural language
understanding that has interested us especially
is the way in which criteria of semantic
well-formedness can be used to resolve cases of
ambiguity in reference evaluation. Our program

incorporates a full deductive mechanism, as
opposed to semantic markers, to capture the
global semantic constraints that arise during

the interpretation. Reference evaluation

proceeds continuously during the combined
syntactic and semantic analysis with semantic
information being used to filter sets of
possible candidates for referents. The method
used to achieve this In a general way s
basically that of Waltz filtering [16]. As can

be seen, the referent returned by the phrase
syntax is likely to be incompletely specified
and for this reason all interaction between the
semantics and the data-base is handled by an

Intermediate data-base handler which implements

The notation used here, and in following
examples, follows the Prolog convention that
names starting with an upper case letter are
logical variables which are purely local to the
structure (Prolog clause). Atoms, which are in
lower case, and compound terms all stand for
themselves. Rules are of the form
'P <— Q & R' meaning 'if Q and R then P".
Most examples have undergone slight cosmetic

alteration.



the inference system and reference filtering
system over these referents.

The syntactic structure built by the clause
syntax specifies a main verb, and positions
such as 'logical subject' and "logical object’
are filled by referents. (We do not construct
a complete parse tree as such). From this
structure a set of assertions is generated Dby
invoking semantic routines. The semantic

analysis of the verb maps the main verb onto a
base verb and establishes a mapping between the
syntactic roles of the clause and the deep
roles associated with the base verb. As a
result the referents are fitted into conceptual

slots In a way similar to conventional
'caseframe’' analysis. The Dbase verb then
specifies the assertions (in terms of the
referents) which follow from this mapping.
Base verbs differ from <case frames In that
while they attempt to generalise collections of
related verbs, they are not defined in terms of
universal primitive roles or slots.

Given a satisfactory parse of a sentence,

which produces a set of consistent assertions
and disambiguates the referents, we are then
able produce a set of assertions (by
instantiating out the referents) about the

These are supplied to
As an example, the
the above problem

objects in the problem.
the problem solving module.
assertions produced for
statement would be:

(1)

isa(period,periodl)
isa(particle,pl)
isa(particle,p2)
isa(string,sl)
isa(pulley,pull)
end(sl,endl,right)
end(sl,end2,left)
midpt(s]l,midptl])

fixed contact(endl,pl,periodl)
fixed contact(end2,p2,periodl)
fixed contact(midptl,pull,periodl)
mass(pl,massl,periodl)
mass(pl,mass2,periodl)
mass(sl,zero,periodl)
coeff(pull,zero)
accel(pl,al,270,periodl)
accel(p2,a22,90,periodl)
measure(massl,b)
measure(mass2,c)

sought(al)

given(massl)

given(mass2)

(2)

In addition the following schema 18 cued:
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cue pullsys stan(sysl,pull,sl,pl,p2,period1)

The cueing of schemata is necessary to provide
extra information, defaults etc. which are not
given explicitly but are 'house rules' in this
domain. (Eg That the pulley in a pulley system
has negligable weight). We cue schemata,

fairly simplistically, by recognising key words
and certain object configurations. For example
the following structure asserts that a
pulley-system schema can be cued if objects can
be found which satisfy the ideal-type
contraints and have certain relationships

between each other.

sysinfo( pullsys,
[PUll,Str.PI,PZ] ’
[pulley,string,solid,solid],
[ supports(Pull,Str),
attached(Str,Pl),
attached(Str,P2)

).

The effect of this cue would be to invoke a

schema such as:

schema( pullsys,
[Pull,Str,P1,P2]), Time,
[ constaccel(Pl,Time),
constaccel (P2, Time),
cue stringsys(Str,{Lpart,Rpart])),
(tension(Lpart,Tl, Time)
<-~ coeff(Pull,zero) &
tension(Rpart,T,Time) )
1
[ coeff(Pull, zero),
mass(Pull, zero,Time)

1.

This schema asserts that in a standard pulley
problem the objects undergo constant
acceleration, the tension in both parts of the
string are equal if there is no friction (only

and that the friction and mass
to zero if not otherwise
has been somewhat

one rule shown),
of the pulley default
given. (This example
simplified).

The
to input
solver -
solver has
a wider
language module

predicate calculus notation can be used
problems directly to the problem
and in fact research on the problem
resulted in it being able to tackle
range of problems than the natural
can currently handle. The
representational principles behind these
assertions view the objects of Newtonian
Mechanics in terms of simple zero and one
dimensional objects (points and lines) which
are typed and have properties and relations
defined over them. For example ©particles,



pulleys, spatial points, moments of time are
all types of POINT while rods, strings, paths
(trajectories), and periods of time are types
of LINE. Physical quantities, such as length,
velocity, force etc., form the other main
branch of our type hierarchy, (see [A]).

The work of the Problem Solver divides into
two types of task. There Is the overall
strategic task of deciding what to do, how to
solve the problem by producing equations which
solve for unknown quantities (including
intermediate unknowns introduced during the
solution). On the other hand there is the
tactical task of combining the input assertions
with general facts and inference rules in order
to prove required goals. We shall discuss each

of these in turn.

Our overall strategy 1is a general goal
directed algorithm for equation extraction
developed from a study by David Marples of
student engineers (12). For instance, suppose
al, the acceleration of particle pl, is the
(only) sought unknown. (Here we continue the

example started above (1) (2) ). Resolution of
forces about pl will be chosen to solve for al
and this produces the equation:

-massl.g + tension! = mass)].al (3)
All possible force contributions on pl are
examined and since pl is attached to the end of
the string this results iIn the string Dbeing
considered. tensionl was formerly unknown but
the function properties of the predicate
'tension' enable it to be created (see later)
to allow the equation to be formed. We have to
introduce tensionl as an unknown because it is
not possible to solve for al without doing so.
The next step is to solve for tensionl which is
a force and involves the string sl. Again
resolution of forces is selected - pl, pull, p2
being objects on the string which are possible
candidates for resolving about. pl has been
previously used and only p2 can be used without

introducing unknowns. The result is the
equation:
mass2.g - tensionl = massZ.al (A)

These two equations can be solved to produce a
solution for al.

The iInput assertions provide meta-level
iInformation about whether certain quantities
are sought or given. The Marples Algorithm

works by traversing the list of sought unknowns
in a fixed order: the (quantity) type of each
unknown being wused to provide a shortlist of
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formulae that could solve for it, and the
definition of the quantity (ie the assertion
which introduced it) being wused to find the
physical objects, times and angles involved.
Notice that there is a distinction made between
'formulae’, which are composed of variables
over quantities (eg 'F-M* A", and
'‘equations’ which are instantiations of
formulae (eg (3) and (4) above). In the
Marples algorithm we are reasoning about the
properties of formulae in order to successfully

produce appropriate equations.

formula to
stage of
facts about
applicability.

Before the application of a
produce an equation, there iIs a
qualitative analysis where general

the problem are used to decide

Our interest here is in exploring the selective
use of meta-level reasoning to guide the
equation extraction process. As well as
deciding applicability we have to prepare a
situation within which to apply a formula.
This may involve, for example, collecting
together all the objects connected to a

particle if we wish to resolve forces about it.
General independence criteria (eg 'You can't
resolve forces about the same object N
linearly dependent directions') are also used
to eliminate redundant equations.

The following are (simplified) examples of
the meta-level structures used during the above
example:

kind(al,accel,
relaccel(pl,earth,al,270,periodl)).

relates(accel,
[resolve,constaccel-N,relaccell).

prepare(resolve,relaccel(P,earth,A,Dir,Time),
situation(P,Set,Dir,Time))
<-- isa(particle,P) &
findall(X, sameplace(X,P,Time), Set).

isform(resolve,situation(0Obj,Set,Dir,Time),
F=M©*A)
<-- mass(Obj, M ,Time) &
accel(Obj,A,Dir,Time) &
sumforces(Obj,Set,Dir,Time, F ).

The kind predicate asserts that al iIs a
quantity of type accel defined in the given
relaccel assertion. relates states that all

the formulae whose names are given in the list,
contain variables of type accel and therefore
can be used to solve for acceleration, prepare
gives the criteria for constructing the
situation within which to resolve forces, and



the isform
defining
variables.

predicate
the

defines the equation by
meaning of Iits component

The equation extraction algorithm is two pass

in that it first tries to produce a solution
which does not introduce new unknowns before
allowing the introduction of extra
(intermediate) unknowns which are added to the
unknowns |ist and have to be eventually solved

for. Notice that the quantities manipulated
are purely symbolic; they can be introduced by
the creation mechanism (see later) without
their values being known at this stage.
E.g. When the first equation (3) was formed in
the above example, the quantity tensionl was
introduced without the program knowing, or
trying to find, its actual value. As can Dbe
seen, it iIs the Marples algorithm which will

eventually produce an equation which solves for
tensionl.

The data-base stores all
by the English statement, but to bridge the gap
between the explicit information derived from
the problem statement and that needed to solve
the problem the program requires a general
knowledge of mechanics which is formalised in a
set of inference rules. An example of such
(object-level) inference rules would be:

the facts supplied

relaccel(Pl,P2,zero,Dir,Period)
<-- constrelvel(Pl,P2,Period).

constrelvel(Pl,P2,Period)
(= fixed_pontact(?l,P2,Period).

the relative
two points of reference is
zero if there is a constant relative velocity
between them (over a certain period), and the
second rule says that two points of reference
have a constant relative velocity if they are
in contact (again, over a certain period). The
inference rules are a set of horn clauses which
have been hand ordered and contain certain
typing information to guide selection. The
search strategy is depth first, with pruning of
semantically meaningless goals, and while this
could be improved upon, current performance has'
not yet necessitated such a step.

The first rule
acceleration between

says that

An important part of our work has been the
investigation of search control mechanisms
which will enable effective use of this wealth
of implicit knowledge. All requests to
retrieve assertions from the data-base, either
directly or via inference, are handled by the
Inference control module. This module uses
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information from the request along with
meta-information and inference rules in an
attempt to satisfy the goal. The first step
involves normalisation of the goal to remove
syntactic sugar or to express it in terms of a
smaller set of underlying predicates. This is
performed with a one pass rewrite rule set.

The resulting goal is then classified according
to the instantiation state of its component
arguments and the possibility of using function

properties and certain other mathematical
properties of the predicate (such as
reflexivity, symmetry and transitivity). This
information is used to select appropriate
proving strategies. (A basic strategy of 'unit
preference’ will always first check the

data-base directly).

Our two most important strategies are the use
of function properties to prune search and the
use of equivalence <class type mechanisms to
direct it. The representation treats what
would normally be considered functions as
predicates with extra control Information.
Being a function means that certain arguments
are uniquely determined Dby certain other
arguments. For example, in the ©predicate
tension(String, T, Time)" The actual tension T
iIs determined once the String and the Time have
been given.
be wused to
another
function argument is

These

prevent
(different)

function properties can
useless inference | f
value of a

already known (uniqgueness property); to create
new entities to satisfy a goal if all attempts
at inference have failed (existence ©property);

and to automatically eliminate backtracking by
disregarding choices made during inference
(unigueness again). Examples of the meta-level
structures used by the program in performing
the above are:

rewrite( accel(P,A,Dir,Time),
relaccel(P,earth,A,Dir,Time),
strategy(dbinf) ).

meta( relaccel, 5,
[P1,P2,A,Dir,Time],
[pt_of ref,pt of ref,accel,angle,time],
function( (Pl,P2,Time] => [A,Dir] ) ).

The rewrite rule tells us that any accel
predicate can be rewritten to a relaccel
predicate with the earth as the other point of
reference, and that the standard inference
strategy is then applicable. The meta
predicate specifies the argument types and the
function properties of the predicate relaccel.



The second major strategy, which provides an

alternative to using the inference rules, is a
general similarity class mechanism Dbased on
equivalence class ideas. Predicates which are
(pseudo-) equivalence relations and would
normally produce self-resolving inference rules
are defined in terms of this mechanism. A tree
IS used to represent similarity class
membership and the goal (such as 'being in the
same place') IS proved by establishing

equivalence of roots. This can be seen as an

alternative (and less explosive) axiomatisation
of these predicates. Our extension over
traditional uses of this method has been to

allow labelled arcs and calculation during the
tree traversal. Thus predicates like ‘'vector
separation’ and 'relative velocity' which have
pseudo-equivalence properties can also use this

strategy. Here is an example of a structure

used in these cases:

rewrite( sameplace(P,Q,Time),
[ sameclass(P,Q,touch(Time)),
merge(P,Q,touch(Time)) ],
strategy(simclass) ).

This states that

the predicate sameplace should
use the general sameclass mechanism on the
particular tree touch(Time). Also specified is
an updating mechanism for adding new sameplace
assertions; In this case it would involve

merging two separate trees.

These general strategies can be applied to a
wide range of predicates and often capture
important facts about the domain (eg the fact
that an object cannot be in two places at once
is a fact about the function properties of
‘at(Object,Place, Time)"). The explicit control
of new object creation coupled with the goal
directed Dbackward reasoning method of the
Marples algorithm results N a
create/consider-by-need type of behaviour.
Restrictions, such as 'don't create' or 'don't
infer', can be added to the request for a goal
to be proved and this enables the Marples
algorithm to be selective over its use of the
Inference Control in accordance with its needs
at the time.

For some mechanics problems a process of
prediction is required to answer questions like
"Will the particle reach the top of the slope
if it starts with velocity V ?". Each question
about the motion of a particle on a complex
slope unpacks into a series of questions about
the behaviour on simple parts of the slope.
Some of these can be answered immediately on

the basis of the qualitative shape of the
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slope, but others involve the solution of
inequalities containing unknown quantities.
These unknowns are declared as sought and the
equation extraction algorithm is called to
solve for them. The inequalities can then Dbe
solved to answer the question. Our present
prediction system is special purpose and built
around problems similar to those in tackled by
De Kleer, ie motion problems.

Since the equations produced by the equation
extraction algorithm are in terms of symbolic
quantities, there is a stage of Unit Conversion

where the actual values are substituted and a
final unit system is selected - conversion
factors being added where appropriate. (Some
problems involve a combination of all sorts of
different units - feet, vyards, miles . . . .. ).
The two equations produced above ((3) & (4))
are very simple in that no particular units are
involved. The only step will be the

substitution of b and ¢ for massl and mass?2

respectively giving:
b.al

-b.g + tensionl *

(9)
(6)

tensionl m c.al

eg -

The set of
Inequalities produced Dby
module Is passed

simultaneous equations and/or
the problem solving
to the algebra module (PRESS)
which will solve them to produce a final answer
to the problem. Let wus look at how PRESS
produces a solution for al given (5) and (6).
The two equations are solved by isolating
tensionl in the second equation (which was
intended to solve for tensionl), and then using
the result as a substitution into the first

equation. This final result can then Dbe

simplified with al being isolated on the left
hand side to give the final answer:

al » g.(c-b) [/ (c+b) (7)

The extension of equation solving techniques

to inequalities (there are interesting
connections) has enabled us to solve the
inequalities produced by the prediction
problems, but in addition we have found that
the information required to justify the use of
certain rewrite rules is often of the form
'only if X > 0' etc. Solving and proving
inequalities is therefore of direct use within

the system.

However, PRESS was not developed purely as a
service program for MECHO. It was intended as
a vehicle to explore ideas about controlling
search In mathematical reasoning using

meta-level descriptions and strategies [3].



Rather than using exhaustive application over a
large set of rewrite rules, it uses the
meta-level stategies of isolation, collection
and attraction to carefully control application
of several different sets of rewrite rules.
This selectivity has many advantages:
principled methods for guiding search cut down
useless work, identical rules may be used in
different ways (eg left to right or right to
left) In different circumstances without
causing problems, and theoretical requirements
such as proof of termination of the rewrite
rules are made much easier.

When PRESS is used as an equation and
inequality solver (ie as a module of MECHO), it
classifies the equations (inequalities) to be

solved so as to generate guidance information.

An exciting area of research that we would like
to expand on is that of designing inclusion and
ordering criteria to classify algebraic
identities which are produced by a theorem
prover. This would enable the system to
automatically learn new rules. The use of
meta-level reasoning to place new rules into a
framework where they will be selectively and

correctly applied overcomes many of the obvious

'explosion’ and ‘'looping' problems that would
occur with haphazard additions to a large
single rewrite rule set.

3. Discussion

Throughout the above description of the Mecho
program we have constantly emphasised the
importance of 'meta-information' in controlling
search. This has been applied in the rejection
of semantlically meaningless parses, the control
of inference, the extraction of equations and

the guiding of algebraic manipulation.

The theme that has emerged from our work is
the benefit to be gained from axiomatising the
meta-level of the domain under investigation
and performing inference at this level,
producing object level proofs as a side effect.
This is the methodology Iinvestigated by Pat
Hayes in the GOLUX project [9], except that we
have developed our meta-level representation
for a particular domain rather than adopting
general purpose representations based on
resolution theorem proving systems.

In [2] we showed how GPS could be viewed in
this way. At the object-level the search space
can be viewed as an operator/state OR tree in
which the states are nodes and the operators
are arcs between them. At the meta-level the
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search space can viewed as a method/goal AND/OR
tree In which the goals are nodes and the
methods are arcs between them. A simple depth
first search at the meta-level then induces a
highly complex, middle-out search at the
object-level.

In order to make clear the distinction we are

drawing between meta-level and object-level
representations in Mecho, we shall Ilist below
examples of the descriptions wused at each
level. When defining a notation it is usual to
define the constants, variables, function
symbols and predicate symbols of the language;
and then to show how terms and formulae can Dbe
formed by composing them together with the
logical connectives. We shall follow this type
of outline in an informal fashion. (To avoid

confusion with earlier terminology we shall use

the words ‘'assertion' and ‘'rule' to replace
"formula') .
At the object-level we have the following

kinds of primitive:

constants pl, endl, mass2, al, right, 90,
270, Ibs, feet etc.

variables PlI, Str, Period, Accel, F, M,
etc.

function symbols +, *, cos etc.

predicate symbols accel, relaccel, mass,
fixed contact etc.

These are formed into terms such as 'M * A' and

assertions such as 'F - M * A', 'accel(pl,al,

270,periodl)’ etc. Finally, logical

connectives are used to form these assertions

into inference rules like:

relaccel(P1,P2,zero,Dir,Period)
<— constrelveKPI|,P2,Period) .

The only function symbols at the object-level
are for straight forward arithmetic and
trigonometric functions. This is because we
have recorded function properties by making
meta-level assertions about object-level
predicates.

At the meta-level all these object-level
descriptions are meta-constants along with
additional meta-constants for schema names,
formula names, object types, strategy types
etc. As examples of meta-level primitives we

have:



constants (Any object level description).
physobj, pullsys, resolve,
particle, line, length, dbinf
etc.

variables Type, Egn, Goal, Strategy,
Exprl etc. (see later)

function symbols Constructors for lists, sets,
bags etc.

predicate symbols meaning, syslnfo, schema,
kind, relates, isform, rewrite,
meta etc.

Again these can be formed into meta-terms and

meta-assertions and we gave several examples

during the program description. What we shall

now examine are the meta-rules which are formed
from these assertions. (These use the same
logical connectives as the object-level rules).
We shall take simplified examples from each of
the four main areas of our work.

The first example is a rule wused by the
Natural Language module, which specifies the
conditions for a property to be correctly

applied to a particular entity.

attribute(Property,Entity,State)
<— type constraint(Property,Type) &
isa(Type,Entity) &
meaning(Property,Entity,Assertion) &
consistent(Assertion,State).

This rule states that a particular Property can
be attributed to an Entity in a given State (of
the parse), if the Entity satisfies the
type constraint of of the Property, and if the
meaning of the attribution is consistent with
all the other assertions in the current State.
(If, for example, the Assertion was 'mass(si,
zero)' then this would involve checking that no
other mass was known for sl. It is here that
we see one of the key connections with our work

on Problem Solving, since this is precisely a
matter of 'function properties'!).

The following is an example taken from the
Marples Algorithm, and it defines the
requirements for an equation to solve for a
particular quantity.

solves for(Q,Eqgn)
<-- kind(Q,Type,Defn) &
relates(Type,Flist) &
select(Formula,F list) &
prepare(Formula,Defn,Situation) &
isform( Formula,Situation,Eqn) .
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This rule states that Egn solves for Q if Q has
type Type and Formula is a formula that relates
Type quantities to other quantities, and if
Situation is the situation within which to
apply the Formula given the Defn of Q, and if
Egn is the instantiation of the formula in the
given Situation. It can be seen that this rule
iIs a direct axiomatisation of our earlier
description of how the Marples algorithm
extracts equations. (The select goal would
specify the qualitative guidance and apply the
iIndependence criteria (given extra arguments)).

In a similar way we
example of rules
Inference Control

give the following
which describe how the
uses function properties.

is_satisfled(Goal)
<— rewrite(Goal,Newgoal,Strategy) &
decompose(Newgoal,Pred,Args) &
meta(Pred,N,Args,Types,Func_info) &
method(Strategy,Func_info,Newgoal).
method( strategy(dbinf),
function(Fargs m> Vals),
<— allnbound(Fargs) &
use_ function_properties(Newgoal).

Newgoal)

is satisfied if
predicate symbol

The first rule states that Goal
it rewrites to Newgoal whose
has certain Func_info, and if a method is used
based on the Strategy and this Func_info.
(Certain arguments to meta have been ignored).
The second rule states that the normal
inference method will prove Newgoal given its
function properties if all the function
arguments, Fargs, are bound, and if

object-level inferencing is performed using
function property pruning.

As a final example we take a rule concerned
with algebraic equation solving. This rule is
interesting in that while PRESS does not
currently wuse it, it could be derived from
rules PRESS does have. Automating this
procedure would be an interesting area for
study.

solve(U,Exprl,Ans)
<— occ(U,Exprl,2) &
collect(U,Exprl,Expr2) &
isolate(U,Expr2,Ans).

This rule states that Ans is an equation which
solves for U given Exprl if Exprl contains two
occurances of U, if Expr2 1is an equation
derived from Exprl N which these two
occurances have been collected together, and if



Ans
U has been

iIs an equation derived from Expr2 in which

isolated on the left hand side.

All the above rules can be seen as
classifying object-level descriptions and using
this information in deciding what to do.
However the effects are very different in the
different areas. In the natural language
processing meta-level rules monitor
object-level assertions, rejecting semantically
unacceptable consequences of a parse. In
equation extraction the effect is to select
equations using a means/ends analysis
technique. In Inference Control the result is
use of the most effective axiomatisation for
the goal in hand, and in Algebraic manipulation
multiple rewrite rules are selectively brought
to bear on expressions. Thus relatively simple
meta-level search strategies can induce a wide
variety of complex object-level behaviours.

These meta-inference techniques were strongly
suggested by our use of the programming
language Prolog. The fact that Prolog
procedures are also predicate calculus clauses
and the fact that predicate calculus has a
clear semantics, encourages the user to attach
meanings to his procedures and these meanings
are usually meta-theoretic. However, Prolog as
a programming language only offers a single
level of 'syntactic’ structures (atoms,
compound terms etc.), and a lack of care can
lead to a blurring of theoretical distinctions.
During the development of Mecho, a lack of

emphasis (realisation?) of these distinctions
resulted in a mixing of object and meta levels,
(for example the use of Prolog variables to

represent variables at both levels, the mixing
of object and meta level assertions in rules
such as i8form). We plan to remove these

aberrations.

Weyrauch's work on the FOL system (See [17]),
iIs of importance in relation to this need for
an adaquate theoretical formalism. The
distinction between the object-level and the

meta-level is fundamental within his system,
and his wuse of ‘'reflection principles' IS
designed to capture the relation between these
levels. We feel that his work is of direct
value to workers in the field of expert
systems, such as ourselves.

about

The principle of utilising ‘'knowledge

knowledge' Is becoming increasingly important
in practical Al programs. Davis and Buchanan
[6] classified four different Kinds of
meta-level knowledge used by their TEIRESIAS

system.
and the

They represent knowledge about objects
data-structures used to describe them
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iIn schemata and describe the
characteristics of their functions In
templates. Their program can classify and
build models of the inference rules it uses and
meta-rules are wused to guide the choice of
inference rules to be used and the order of
using them. In MECHO, the Natural Language and
Inference Control modules both use information
like that stored in TEIRESIAS templates. MECHO
meta-level iInference rules are similar In
spirit to TEIRESIAS meta-rules except that the
MECHO rules are more general purpose and they
generate a variety of different search
strategies in different contexts.

argument type

4. Conclusion

have discussed Mecho, a
program for solving mechanics problems. We
have shown how the technique of wusing and
controlling knowledge about the domain by
inference at the meta-level, can be applied to
a range of different areas. Many workers in
the field (eq [9], [6], [17]), have argued that
controlling search by using meta-level
inference is superior to built-in, smart search
strategies because the search information is
more modular and transparant. The argument s

In this paper we

for systems to make explicit the full knowledge
involved in their behaviour, which in turn aids
the modification of their data and strategies,
thus Iimproving their robustness and generality.
This leads the way to systems which could
automatically modify their strategies and
explain their control decisions.

We conclude that meta-level inference can be
used to build sophisticated and flexible
strategies, which provide powerful techniques
for controlling the use of knowledge, while
retaining the <clarity and modularity of a
declarative knowledge representation.
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What is an Image?
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Image-making, and more particularly art-making, are considered as rule-based activities in which

certain fundamental rule-sets

generates,

program is described, and examples of its output given.

of the program is discussed in terms of cultural considerations, particularly with respect
to our relationship to the images of remote cultures. An art-museum

tion
involving

in the program.

are bound to low-level cognitive processes. AARON, a computer-
program, models some aspects of image-making behavior through the action of

these rules, and
In consequence, an extremely large set of highly evocative "freehand" drawings. The
The theoretical basis for the formula-

environment implementation

a special-purpose drawing device is discussed. Some speculation is offered concerning
the function of randomising in creative behavior, and an account given of the use of

randomness

The conclusions offered bear upon the nature of meaning as a function of an
iImage-mediated transaction rather than as a function of intentionality.

the structure of all drawn images, derives from the nature of visual cognition.

1. INTRODUCTION

AARON is a computer program designed to model
some aspects of hunan art-making behavior, and
to produce as a result "freehand"” drawings of a
highly evocative kind (figs 1,2). This paper
describes the program, and offers in Its
conclusions a number of propositions concerning

the nature of evocation and the nature of the
transaction — the making and reading of images
— In  which evocation occurs. Perhaps

unexpectedly for the program has no access
to visual data — some of these conclusions
bear upon the nature of visual representation.
This may suggest a view of image-making as a
broadly referential activity in which various
differentiate modes, including what we call
visual representation (note 1), share a

significant body of cannon characteristics.

In some respects the methodology used in this
work relates to the modelling of "expert
systems" (note 2), and it does in fact rely
heavily upon my own "expert" knowledge of
Image-making. But in its motivations it comes
closer to research in the computer simulation
of cognition. This is one area, | believe, iIn
which the investigator has no choice but to
model the human prototype. Art is valuable to
human beings by virtue of being made by other
human beings, and the question of finding more
efficient modes than those which characterise
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They propose also that
hunan performance simply does not arise.
My expertise in the area of ijnage-making rests

upon many years of professional activity as an
artist — a painter, to be precise (note 3)
and it will be clear that my activities as an
artist have continued through my last ten years
of work in computer-modelling. The motivation
for this work has been the desire to understand
more about the nature of art-making processes
than the making of art itself allows, for under
normal circumstances the artist provides a
near-perfect example of an obviously-present,
but virtually inaccessible body of knowledge.
The work has been informal, and Cua psychology
acks methodological rigor. It is to be hoped,
nowever, that the body of highly specialised
Kknowledge brought to bear on an elusive problem
will be some compensation.

AARON is a knowledge-based program, in which
knowledge of image-making is represented In
rule form. As | have indicated | have been my
own source of specialised knowledge, and | have
served also as my own knowledge-engineer.
Before embarking on a detailed account of the
program's workings, | will describe in general
terms what sort of program it is, and what it
purports to do.

First, what it is not. It 1s not an "artists'
tool". | mean that it is not interactive, it iIs
not designed to implement key decisions made by






the
upon

and it does not do transformations
data. In short, it Is not an

user,
iInput

instrument, In the sense that most computer
appl ications In the arts, and IN  music
particularly, have identified the machine in

essentially instrument-like terms,

AARON is not a transformation device. There is
no input, no data, upon which transformations
could be done: in fact it has no data at all
which it does not generate for itself in making
its drawings. There is no lexicon of shapes, or
parts of shapes, to be put together, assembly
line fashion, into a complete drawing.

It is a complete and functionally independent
entity, capable of generating autonomously an
endless succession of different drawings (note
4). The program starts each drawing with a

clean sheet of paper — no data —  and
generates everything it needs as it goes along,
building up as it proceeds an internal
representation of what it is doing, which is
then used N determining subsequent
developments. It 1s event driven, but in the

special sense that the program itself generates
the events which drive it.

It is not a learning program, has no archival
memory, is quite simple and not particularly

clever. It is able to knock off a pretty good
drawing — thousands, in fact — but has no
critical judgement that would enable it to
declare that one of its drawings was "better"

than another. That has never been part of the
aim. Whether or not it might be possible to
demonstrate that the artist moves towards
higher goals, and however he might do so
through his work, art-making in general lacks
clear internal goal-seeking structures. There
Is no rational way of determining whether a
"move" Is good or bad the way one might judge a
move Iin a game of chess, and thus no
iIimmediately apparent way to exercise critical
judgement in a simulation.

This lack of internal goal-orientation carries
with it a number of difficulties for anyone
attempting to model art-making processes: for
one thing, evaluation of the model must
necessarily be informal. In the case of AARON,
however, there has been extensive testing.
Before describing the testing procedure it will
be necessary to say with more care

distinguishing here between the program's goals
and my own — what AARON is supposed to do.

Task Definition.

It is not the intent of the AARON model to turn
out drawings which are, in some ill-defined and
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loosely-understood sense, aesthetically

pleasing, though it does In practise turn out
pleasing drawings. It is to permit the
examination of a particular property of
freehand drawing which | will call, in a
deliberately general fashion, standing-for-
ness.

The Photographic "Norm"

One of the aims of this paper is to give

clearer definition to what may seem intuitively
obvious about standing-for-ness, but even at

the outset the "intuitively obvious"” will need
to be treated with some caution. In
particular, we should recognise that unguarded

assumptions about the nature of "visual”
Imagery are almost certain to be colored by the
XX th century's deep preoccupation with
photography as the "normal”™ image-making mode.
The view that a drawn image is either:

1. representational ( concerned with the
appearance of things), or

2. an abstraction (i.e. fundamentally
appearance-oriented, but transformed in the

interest of other aims) or,
3. abstract (i.e. it doesn't stand for
anything at all),

betrays just this pro-photographic filtering,

and is a long way from the historical truth.
There is a great wealth of imagistic material
which fits none of these paradigms, and it is
by no means clear even that a photograph
carries its load of standing-for-ness by virtue
of recording the varying light intensities of a
particular view at a particular moment in time.

It is for this reason that image-making will be
discussed here as the set of modes which
contains visual representation as one of its
members. It is also why | used the word
"evocative" in the first paragraph rather than
"meaningful”. My domain of enquiry here is not
the way In which particular meanings are
transmitted through 1Iimages and how they are
changed in the process, but more generally the
nature of Iimage-mediated transactions. What
would be the minimum condition under which a
set of* marks may function"as an image? This
question characterises economically the scope
of the enquiry, and it also says a good deal
about how the word "image" is to be wused In
this paper, though a more complete definition
must wait until the end.




Art-making and Image-making.

The reader may detect some reluctance to say
firmly that this research deals with art-making
rather than with image-making, or vice-versa.
The two are presented as continuous. Art-making
Is almost always a highly sophisticated
activity involving the interlocking of complex
patterns of belief and experience, while in the
most general sense of the term image-making
appears to be as "natural™ as talking. All the
same, art-making is a case of image-making, and
part of what AARON suggests is that art-making
rests upon cognitive processes which are
absolutely normal and perfectly common.

figure 3.

Evaluation.

A simulation program models only a small piece
of the action, and it requires a context in
which to determine whether it functions as one
expects that piece to function. AAPON is not an
artist. It simply takes over some of the
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functions which normally require an artist to
perform them, and thus it requires the whole
art-making process to be carried forward as a
testing context. The program's output has to be
acceptable to a sophisticated audience on the
same terms as any other art, implying thereby
that it must be seen as original and of high

quality, not merely as a pastiche of existing
work.

A valid testing procedure must therefore
contain a sophisticated art-viewing audience,
and the informal in situ evaluation of the
simulation has been carried out In museum
environments: the DOOUVENIA 6 international
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exhibition iIn Kassel, Germany, and the
prestigeous Stedelijk Museum in Amsterdam, the
two exhibits together running for almost five
months and with a total audience of almost half
a million museum-goers. In both of these shows
drawings were produced continuously on a
Tektronix 4014 display terminal and also with

an unconventional hard-copy device ( to be



described later). A FOP 11/34 ran the program
in full view of the gallery visitors (fig 3).

In addition and at other times the program's
output has been exhibited in a more orthodox
mode in museums and galleries in the US and in
Europe.

These exhibits were not set up as scientific
experiments. Nor could they have been without
distorting the expectations of the audience,
and thus the significance of any results. No
formal records were kept of the hundreds of
conversations which took place between the
artist and members of the audience. This report
is therefore essentially narrative, but offered
with some confidence.

Audience Response.

A virtually universal first assumption of the
audiences was that the drawings they were
watching being made by the machine had actually
been made in advance by the "real"” artist, and
someow "fed" to the machine. After it had been
explained that this was not the case viewers
would talk about the machine as if it were a
human artist. There appeared to be a general
consensus that the machine exhibited a good-
natured and even witty artistic personality,
and that its drawings were quite droll (fig 4).
Sane of the viewers, who knew my work from ray
pre-computing, European, days claimed that they
could "recognise my hand" in the new drawings.
This last is particularly interesting, since,
while | certainly made use of my own body of
knowledge concerning Image-making in writing
the program, the appearance of my own work
never consciously served as a model for what
the program was supposed to do.

More to the point, while a very small number of
people insisted that the drawings were nothing
but a bunch of random squiggles, the majority
clearly saw them in referential terms. Many
would stand for long periods watching, and
describing to each other what was being drawn:
always in terms of objects in the real world.
The drawings seem to be viewed mostly as
landscapes inhabited by "creatures", which
would be "recognised" as animals, fish, birds
and bugs. Occasionally a viewer would
"recognise” a landscape, and once the machine's
home was identified as San Francisco, since it
had just drawn Twin Peaks.

It might be correctly anticipated that on those
other occasions when drawings have simply been
framed and exhibited without any reference to
their origins, the question of their origins
has never arisen, and they have met with a
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typical cross-section of

responses

museum-goers

Even without formal evaluation, it might
reasonably be claimed that the program provides
a convincing simulation of human performance.

The next part of this paper is divided into
five sections. In the first, a general
description of the production system as a whole
Is given. The following three sections deal
with particular parts of the production system:
the MOWIVENT CONIROL part, the PLANNING part,
and the part which handles the internal
representation of the drawings as they proceed.
The second of these, on PLANNING, also gives an
account of the theoretical basis for the
program. The fifth section has something to say

about the function of randomness in the
program, and also discusses to what extent it
might be thought to parallel the use of

randomness Iin human art-making behavior. The
third and final part draws conclusions.

RRRRRRRRA RN RNN

figure 4.



2. TOE FROGRAM 'AARON'

24 THE PRODUCTION SYSTEM.

The main program (note 5) has about three
hundred productions. Many of these are to be
regarded as micro-productions in the sense that
each of them handles only a small part — an
-action-atom- — of a larger conceptual unit of
action. For example, the drawing of a single
line, conceptually a single act, actually
iInvolves twenty or thirty productions on at
least three levels of the system. This fine-
grain control over the drawing process
subscribes both to its generality — most of
these action-atoms are invoked Dby many
different situations — and to its flexibility,
since it allows a process to be interrupted at
any point for further consideration by higher-
level processes.

Levels of Organisation.

The organisation of the system is heirarchical,

N the sense that the higher levels are
responsible for decisions which constrain the
domain of action for the lower levels (fig 95).

Each level of the system is responsible only
for its own domain of decison-making, and there
IS no conceptual homunculus sitting on the top
holding a Dblueprint and directing the whole
operation. No single part knows what the
drawing should turn out to be like. There is
some practical advantage to this level-wise
splitting up of the system, but the program was
designed this way primarily for reasons of
conceptual clarity, and from a desire to have
the program structure itself — as well as the
material contained within it — reflect my
understanding of what the human image-making
process might be like. | believe that the
constant shifting of attention to different
levels of detail and conceptualisation provides
this human process with some of its important
characteristics. Thus the left part of each
production searches for combinations of up to
five or six conditions, and each right part may
perform an arbitrary number of actions or
action-atoms, one of which may involve a jump
to another level of the system.

ARTWORK

The topmost level of the system, the ARWIRK
level, is responsible for decisions relating to
the organisation of the drawing as a whole. It
decides how to start, makes some preliminary
decisions which may later determine when and
how it is to finish, and eventually makes that
determination. The program currently has no
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archival memory, and begins each drawing as if
it has never done one before. (One can easily
iImagine the addition of a higher level designed
to model the changes which the human artist
deliberately makes in his work from one piece

to the next: this Ilevel would presumably be
called EXHIBITION.)

ARWCRK also handles some of the more important
aspects of spatial distribution. It is my
belief that the power of an image to convince
us that it is a representation of some feature
of the visual world rests in large part upon
the image's fine-grain structure: the degree to
which it seems to reflect patterns In the
changes of information density across the field
of vision which the cognitive processes
themselves impose upon visual experience.

Put crudely, this means, for example, that a
decision on the part of the reader of an image
that one set of marks is a detail of another
set of marks rather than standing autonomously,
Is largely a function of such issues as
relative scale and proximity. This function is
quite apart from the more obviously affective
iIssue of shape ( and hence "semantic")
relationship. It is the overall control of the
varying density of information in the drawing,
rather than the control of inter-figural
relationships, which is handled by ARTWORK

'MAPPING" and "PLANNING-

All problems involving the finding and
allocation of space for the making of
individual elements in the drawing is handled

by MAPPING, though its functions are not always
heirarchically higher than those of PLANNING,
which is responsible for the development of
these individual figures. Sometimes PLANNING
may decide on a figure and ask MAPPING to
provide space, while at other times MAPPING may
announce the existence of a space and then
PLANNING will decide what to do on the basis of
its availability. Sometimes, indeed, MAPPING
may override a PLANNING decision by announcing
that an appropriate space is not available. A

good example of this occurs when PLANNING
decides to do something inside an existing
closed figure and MAPPING rules that there

isn't enough room, or that what there is is the
wrong shape.

MAPPING will be referred to again in relation
to the data-structures which constitute the
program's internal representation of what it is

doing, and PLANNING also as one of the
centrally important parts of the program.
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figure 6.

LINES AND SECTORS

Below this level the heirarchical structure of

the system s fairly straightforward. Each
figure is the result of (potentially) several
developments, each provided by a return of
control to PLANNING. Each of these
developments may consist of several lines, and
for each of the successive lines of each

development of any figure LINES must generate a
starting point and an ending point, each having
a direction associated with it (fig 6). It also
generates a number of parameters on the basis

nf specifications drawn Up in PLANNING which
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figure 7.

determine how the line is to be drawn: whether
reasonably  straight, wiggly, or strongly
curved, and, if various overlapping modes are
called for (fig 7), how they are to be handled.

As | have indicated, lines are not drawn as the
result of a single production. When LINES
passes control to SECIORS the program does not
know exactly where the line will go, since the

constraint that it must start and end facing
specified directions does not specify a path:
there are an indeterminate number of paths

which would satisfy the constraint. The program

does not choose one, it generates one. SECIORS
produces a series of "imagined" partial
destinations — signposts, as it were (fig 8)

each designed
its final end-state.
these signposts it
whose function s

to bring the line closer to
On setting up each of
passes control to CURVES,
to generate a series of

movements of the pen which will make it veer
towards, rather than actually to reach, the
current signpost. Control is passed back to
SECTORS when the pen has gone far enough

towards the current signpost that it is time to
look further ahead, and it is passed back to
LINES when the current line has been completed
and a new one is demanded by the development
still Iin progress.

2.2 MOVEVENT CONTROL

We are now down to the lowest level of the
program, and to the way in which the curves

which make up the drawing are actually
generated. This part is not discontinuous from
the rest, of course. The flexibility of the

program rests in large part upon the fact that
the heirarchy of control extends downwards to
the finest-grained decisions: no part of the
control structure is considered to be so



that it should fall below the
interface line. Thus, the story of how the pen
gets moved around follows on from the
description of how the intermediate signposts
are set up.

automatic

Abstract Displays and Real Devices

In the earlier versions of the program all the
development work was done exclusively on a
graphic display, and the "pen" was handled as

an abstract, dimensionless entity without
real-world constraints upon its movements.
Conceptually, however, | always thought of the

problem of moving the pen from point A facing
direction alpha, to point B facing direction
beta, as being rather like the task of driving
a car off a main road into a narrow driveway

™~
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set at some known arbitrary angle to it. This
Is clearly not a dead-reckoning task for the
human driver, but one which involves continuous
feedback and a successive-approximation
strategy.

reasonable, therefore, to be
faced at some point with the problem of
constructing an actual vehicle which would
carry a real pen and make real drawings on real

It seemed quite

sheets of paper. That situation arose in the
Fall of '76 when | was preparing to do the
museum exhibitions which | mentioned earlier,
and decided that if | wanted to make the
drawing process visible to a large number of
people simultaneously, | would need to wuse

something a good deal bigger than the usual

graphic display with its 20-inch screen.




The Turtle,

The answer turned out to be a small two-wheeled
turtle (fig 9), each of its wheels
independently driven by a stepping motor, so
that the turtle could be steered by stepping
the two motors at appropriate rates, it is thus
capable of drawing arcs of circles whose radius
depends upon the ratio of the two stepping
rates.

Since the two wheels can be driven at the same
speed Iin opposite directions, the turtle can be
spun around on the spot and headed off in a
straight line, so that this kind of device is
capable of simulating a conventional Xx-y
plotter. But it seemed entirely unreasonable to
have built a device which could be driven like
a car and then use it to simulate a plotter.
In consequence the pen-driving procedures
already In the program were re-written to
generate the stepping rates for the motors
directly — to stay as close as possible to the
human model's performance — rather rather than
calculating these rates as a function of
decisions already made.

The advantage here was a conceptual one, with
some practical bonus in the fact that the
turtle does not spend a large part of its time
spinning instead of drawing. It also turned out
unexpectedly that the generating algorithm
simplified enormously, and the quality of the
freehand simulation improved noticeably.

Feedback.

The program does not now seek to any place —
in cartesian terms but concerns itself
exclusively with steering: thus the turtle's
cartesian position at the end of executing a
single command is not known in advance. Nor is
this calculation necessary when the turtle is
operating iIn the real world. It was not
designed as a precision drawing device, and
since it cannot perform by dead-reckoning for
long without accumulating errors, the principle
of feedback operation was extended down into
this real-world part of the program. The device
makes use of a sonar navigation system (fig 10)
by means of which the program keeps track of
where it actually is. Instead of telling it to
"go to x,y" as one would tell a conventional
plotter, the program tells it ""do the following
and then say where you are".

A more detailed account of the turtle system,
and it's effect upon the simulation of freehand
drawing dynamics, is given in Appendix 1.
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2.3 "PLANNING"

No single level of the program can be described
adequately without reference to the other
levels with which it interacts: it has already
been mentioned, for example, that MAPPNG may
either precede PLANNING in determining what is
to be done next, or it may serve PLANNNG by
finding a space specified there. Additionally,
any development determined in PLANNING may be
modified subsequently either as a result of an
imminent collision with another figure or
because provision exists in the program for
"stacking" the current development in order to
do something not originally envisaged (fig
11a,b). All the same, the drawing is conceived
predominantly as an agglomeration of figures,
and to that extent PLANNING, which IS
responsible for the development of individual
figures, iIs of central importance.

Behavioral Protocols in Image-Making.

Of the entire program, it is also the part
least obviously related to the effects which it
accomplishes. While the formal results of its
actions are clear enough — an action calling
for the closure of a shape will cause it to
close, for example — it is not at all clear
why those actions result in the specifically
evocative quality which the viewer experiences.



A rule-by rule account of this effect is not
appropriate, because the individual rules do no
more than implement conceptual entities —
which | will call behavioral protocols

— which are the fundamental units from which
the program is Dbuilt. These protocols are
never explicitly stated iIn the program, but
their existence Is what authorises the rules.
Thus, before describing in detail what 1Iis In
PLANNING | should give an account of the
thinking which preceeded the writing of the
program, and try to make clear what | mean by a
protocol.

Background.

It is a matter of fact that by far the greatest
part of all the imagery to which we attach the
name of "art" comes to us from cultures more or
less remote from our own. It is also a matter
of fact that within our own culture, and In
relation to its recent past, our understanding
of imagery rest to a great extent upon prior
common understandings, prior cultural
agreements, as to what is to stand for what —
prior, that is to say, to the viewing of any
particular 1mage. It is unlikely that a
Renaissance depiction of the Crucifixion ("of
Christ" being understood here by means of just
such an agreement!) would carry any great

weight of meaning If we were not already
familiar both with the story of Christ and with
the established conventions for dealing with
the various parts of the story. Indeed, we
might be quite confused to find a depiction of
a beardless, curly-headed youth on the cross
unless we happened to possess the now-abstruse
knowledge that Christ was depicted that way —
attaching a new set of meanings to the old
convention for the representation of Dionysus
— until well into the 7th century. In general,
we are no longer party to the agreements which
make this form acceptable and understandable.
We must evidently distinguish between what is
understandable without abstruse knowledge — we
can, indeed, recognise the figure on the cross
as a figure — and what is understandable only
by virtue of such knowledge.

In the most general sense, all cultural

conditions are remote from us, and differ only
in the degree of their remoteness. We cannot
really comprenend why the Egyptians made

sphinxes, what Michelangelo thought the ancient
world had in common with Christianity, or how
the internal combustion engine was viewed by
the Italian Futurists seventy years ago who
wanted to tear down the museums in its honor.
What abstruse knowledge we can gain by reading
Michelangelo's writings, or the Futurist
Manifesto, does not place us into the cultural
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environment in which the work Is embedded. A
culture Is a contiuium, not a static event: its
understandings and meanings shift constantly,

and their survival may appear without close
scrutiny to be largely arbitrary. In the
extreme case, we find ourselves surrounded by
the work of earlier peoples so utterly remote
from us that we cannot pretend to know anything
about the people themselves, much Iless about
the meanings and purposes of their surviving

images.

The Paradox of Insistent Meaningfulness.

There is an implicit paradox in the fact that
we persist in regarding as meaningful — not on
the basis of careful and scholarly detective

work, but on a more directly confrontational
basis — Images whose original meanings we
cannot possibly know, including many that bear

no explicitly visual resemblance to the things
in the world. Presumably this state of affairs

arises in part from a fundamental cultural
egocentrism — what, we ask, would we have
intended by this image and the act of making

1t? which is fundamentally distortive.
There has also been a particular confusion in
this century through the widespread acceptance
of what we might call the telecommunications
model of our transactions through imagery,
particularly since in applying that model no
differentiation has been observed between the
culture we live in and the cultures of the
remote past. In the view of this model,
original meanings have been encoded Iin the
Image, and the appearance of the image in the
world effects the transmission of the meanings.
Allowing for noise In the system the
inevitability of which gives rise to the
notion, in art theory, of "interpretation" —
the reception and decoding of the Iimage makes
the original meanings available.

However useful the model is as a basis for
examining real telecommunication-like
situations, Iin which the intended meanings and
their transformations can be known and tracked,
it provides a general account of our
transactions through Images which
inadequate. The encoding and decoding of
messages requires access to the same code-book
by both the image-maker and the image-reader,
and that code-book is precisely what is not
carried across from one culture to another.

|  think it
insistent meaning fulness, as we might call it,
constitutes the normal condition of Iimage-

IS quite

Is clear also that the paradox of
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mediated transactions, not an abnormal
condition. It evidently extends below the level
at which we can recognise the figure, but not
what the figure stands for, since so much of
the available imagery is not Iin any very
obvious sense ‘"representational®™ at all. The
paradox is enacted every time we look at a few
marks on a scrap of paper and proclaim them to
be a face, when we know perfectly well that
they are nothing of the sort.

Cognitive Bases for Image Structure.

In short, my tentative hypothesis in starting
work on AARON was that all image-making and all
Image-reading Is mediated by cognitive
processes of a rather low-level Kind,
presumably processes by means of which we are

able to cope also with the real world. In the
absence of oommon cultural agreements these
cognitive processes would still unite Iimage-

maker and image-viewer in a single transaction.
On this level — but not on the more complex

culture-bound level of specific iconological
intentionality — the viewer's egocentricity
might be justified, since he could correctly

identify cognitive processes of a familiar Kkind
in the making of the image. But let me detail
this position with some care. | am not
proposing that these processes make it possible
for us to understand the intended meanings of
some remotely-generated image: | am proposing
that the intended meanings of the maker play
only a relatively small part in the sense of
meaningfulness. That sense of meaningfulness is
generated for us by the structure of the Iimage
rather than by its content.

| hope | may be excused for dealing in so
abbreviated a fashion with issues which are a
good deal less than self-evident. The notion of
non-enculturated behavior — and that notion
lurks behind the last few paragraphs, obviously
— IS a suspect one, since all human behavior
IS enculturated to some degree: but my purpose
was not to say what part of human behavior is
dependent upon enculturating processes and what
is not. It was simply to identify some of the
determinants to a general image-structure which
could be seen to be common to a wide range of
enculturating patterns. The implication seemed

strong — and still does — that the minimum
condition for generating a sense of
meaningfulness did not need to include the
assumption of an intent to communicate: that
the exercise of an appropriate set of these
cognitive processes would itself be sufficient

to generate a sense of meaningfulness.



Cognitive Skills,

set. |
that the options are wide, and

The task then was to define a suitable
have no doubt

that my own choices are not exclusive. | chose
at the outset to include:
1. the ability to differentiate between
figure and ground,
2. the ability to differentiate between

open and closed forms, and

3. the ability to differentiate
insideness and outsideness (note 6).

between

AARON has developed a good deal
starting point, and some of its current
abilities clearly reflect highly enculturated
patterns of behavior. For example, the program
Is now able to shade figures In a mode
distinctly linked to Renaissance and post-
Renaissance representational modes: other
cultures have not concerned themselves with the
fall of light on the surfaces of objects in the

from that

same way. Nevertheless, a large part of the
program is involved still in demonstrating its
awareness of the more primitive
differentiations.

Protocols and Rules.

Against this background, | wuse the term
protocol to mean the procedural instantiation
of a formal awareness. This is clearly a
defination which rests upon cognitive, rather
than perceptual, modes, since it involves the

awareness of relational structures. Thus, for
example, the program's ability to differentiate
between form and ground makes possible an
awareness of the spatial relationships between
forms, and generates finally a set of avoidance
protocols, the function of which is to prohibit
the program from ignoring the existence of one
figure in drawing another one. The protocols
themselves are not explicitly present in the
program, and are manifested only through their
enactment by the rules which describe what to
do In particular circimstances where the
overlapping of figures is threatened.

Figure Development

In keeping with the heirarchical structuring
which informs the program as a whole, PLANNING
considers a figure to be the result of a number

of developments, each determined in part by
what has gone before. The program enacts a
number of repetition protocols, and a single

development in the making of a figure can often
involve the repetition of a single action (fig
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12), rather than the agglomeration of different
actions. The first productions to deal with
the first development of any figure decide, on
the basis of frequency considerations, that
this figure will be closed, that it will be
open, or that it will be, for the moment,
"unconmitted” that is, a line or a complex

of lines will be drawn, but only at a Ilater
stage will it be decided whether or not to
close. If the primary decision is for closure,
\ /
repeat \\ 1 protelbype
\\ 7
h — e = owe  —
—_ Y
/
/
/
repeat /
e —
o repeat ¥
figure 12.

then PLACING will decide between a number of
options, mostly having to do with size and
shape MAPPING permitting and with
configuration. In some <cases it will not
actually draw the boundary of a closed form at
all, and will leave the definition of the
occupied space to await subsequent space-
filling moves.

If the decision is for a non-closed form, then
again a number of options are open. In Dboth
cases the available options are stated largely
in terms of repetition protocols, the enactment
of which determines the formal characteristics
of the resulting configuration. These
characteristics are not uniquely defining,
however, and a number of different formal sub-
groups may result from a single repetition
protocol and its rules. For example, one such
protocol, involving a single line in this case,
requires the line to move a given distance
(more-or-less) and then change direction,
continuing this cycle a given number of times.
All the figures marked in (fig 13) result from
this: the details of implementation In the
individual cases are responsive to their unique
environmental conditions, and in any case may
be changed at any point by the overriding
avoidance protocol, which guarantees the

territorial integrity of existing figures.



Thus the program will know at the beginning of
each development what the current intention is,
but will not know what shape will result. A
closed form generated by a "go,turn, repeat”
cycle may in fact turn out to be extremely long
and narrow (fig 14), and a number of second
developments associated with a closed-form
first development will then be unavailable:
there will be a limit, for example, upon what
can be drawn inside it, though it may develop
in other ways, as this one does.

Proliferation.

Even with constraints of this sort there is a
significant proliferation in the number of
productions associated with the second
development of any figure. A typical first
development might be initiated by:

It (this is a first development
and the last figure was open
and at least n figures have been done
and at least g of them were open
and at least t units of space are now
available)

Then

This figure will be closed
specifications for repetition
specifications for configuration

to move on from this point:
If (this is a second development
and the first was closed
and its properties were
a. (size)
b. (proportions)
c. (complexity)

figure 14.

figure 13.
d. (proximity to ...)

Then either
1. divide it
specifications

or

2. shade it
specifications...

or

3. add a closed form to it
specifications...

4. do a closed form inside
specifications...

or

5. do an open form inside
specifications...



This
productions, each responding to a different
combination of properties in the first
development. Similarly, continuation  will
require...

is a prototype for an expanding class of

If (this is a third development
and the first was a closed form
properties...
and the second was a closed form
. properties... )

Then
shade the entire figure:
specification 1:
a boulder with a hole in it
or
specification 2:
a flat shape with a hole
or
specification 3:
a penumbra.

If (this is a third development
and the first was closed
and the second was a series of
parallel lines inside it ...
and the remaining inside space is at
least s... )

Then
do another series of lines:
specification 1:
perpendicular to first ..
or
specification 2:
alongside the first...
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figure 15.

or

specification 3:
do a closed form in available
space...

(note 7).

The Relationship of Closed Foms and Open
Forms.

The same proliferation of options occurs for
open-lined structures also, but not to the same
degree. One of the interesting things to ocome
out of this program is the fact that open-line
structures appear to function quite differently
when they are alone in an image than when they
appear in the presence of closed forms. There
seems to be no doubt that closed forms exert a
special authority in an image perhaps
because they appear to refer to objects — and
In their presence open-lined structures which
in other circumstances might exert similar
pressure on the viewer are relegated to a sort
of spatial connective-tissue function. A
similar context-dependancy is manifested when

material is presented inside a closed form (fig
15). it is "adopted”, and becomes either a
detail of the form, or markings upon it. This

seems to depend upon particular configurational

Issues, and especially the scale relationship
between the "parent” form and the newly
introduced material. This manifestation s

important, | believe, in understanding why we
are able to recognise as "faces" so wide a
range of closed forms with an equally wide
range of internal markings following only a
very loose distribution specification.



Limits on Development.

At the present time no figure in the program
goes beyond three developments, and few go that
far, for a number of reasons. In the first
place, most of the (formal) behavior patterns
in the program were initially intended to model
a quite primitive level of cognitive
performance, and for most of these a single
development is actually adequate. Once a zig-

zag line has been generated, repetition, for
example — as it is found in existing primitive
models — seems limited to those shown in (fig

16).

It has remained quite difficult to come up with
new material general enough for the purposes of
the program. It is the generality of the
protocols which guarantees the generality of
the whole, and new material is initiated by the
introduction of new protocols. On the level of
the procedures which carry out the action parts
of the subsequently-developed productions, the
approach has been to avoid accumulation of

special routines to do special things. There is
only one single procedure adapting the
protocols of repetition and reversal to the

generation of a range of zigzag-like forms, for
example (fig 13).

But there has been another, and equally
significant reason, for the Ilimitation upon
permissible developments. It is the lack of

adequate, and adequately
differentiations in the existing figures. For
the primitive model represented by the earlier
states of the program it was almost enough to
have a set of abilities called up by the most
perfunctory consideration of the current state
of the drawing: the stress was on the
definition of a suitable set of abilities (as
represented by the right-hand parts of the
productions), and as it turned out it was quite

important,

difficult to exercise those abilities without
generating moderately interesting results. But
for a more sophisticated model it is clearly
not enough merely to extend that set of
abilities, and the problem of determining why
the program should do this rather than that
becomes more pressing.

The limitation here can be considered in two

ways. One is that | had reached the point of
exhausting temporarily my own insights into the
Image-building process. The other is that | had
not made provision in the first versions of the
program for being able to recognise the kind of
differentiations | would want to deal with —
since | could not know at the outset what they
were going to be — and thus lacked a structure
for developing new insights. This leads to a
consideration of my next topic: how the program

builds its own representation of what it has
done up to any point in the making of the
drawing.

AVAVAVINIINY
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2.4 INTERNAL REPRESENTATION

In the earlier stages of the development of the
program, provision had been made for
progressive access to the information stored in
the data-structure, following the principal
that it should not have to access more than it
actually needed for the making of any
particular decision. In practise, a great deal
more was stored than was ever accessed. At the
first level of detail the program made use of a
quite coarse matrix representation, in each
cell of which was stored an identifier for the
figure which occupied it, and a number of codes
which designated the various events which might
have occurred in it: a Iline belonging to a

closed form, a line belonging to an open form,
a line junction, an wunused space Iinside a
closed figure, and so on. Obviously, it was
not possible to record a great deal in this

way, and data concerning the connectivity of

the figure in particular required a second
level of the structure.
This was an unpleasantly elaborate linked-list

structure of an orthodox kind. By definition,
the kind of drawing AARON makes is not merely a
growing, but a continuously-changing,
structure. What was a point on a line becomes a
node when another line intersects it, and this
change has to be recorded by updating the
existing structure, which must now ideally show
the four paths connecting this node to four
adjacent nodes.

Both updating this structure and accessing the
iInformation contained within it proved to be
quite tiresome, and the scheme was never

general enough to admit of further development.
As a result, it was used less and less, and
decision -making has been based almost
exclusively on the information contained in the
matrix on the one hand, and in a third level of
the structure, a simple property-list attaching

to each figure, on the other. The most
surprising thing about this simplistic and
distinctly ad-hoc scheme is that it was

actually quite the needs of the

program.

adequate to

Explicit Data and Implicit Data.

Human beings presumably get first-order
iInformation about a picture by looking at the
picture. | have always found it quite
frustrating that the program couldn't do the

same thing: not because it made any difference

to the program, but because it made it
difficult for me to think about the kind of
issues | Dbelieved to be significant. Part of
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the problem of using a linked-list structure to
represent the connectivity of a figure, for
example, derived from the fact that
connectivity had to be explicitly recorded as
it happened: it would have been much too
difficult to traverse a structure of this kind
post-hoc Iin order to discover facts about
connectivity. If one could traverse the figure
the way the eye does — loosely speaking! — it
would not Dbe necessary to give so much
attention to recording explicitly all the data
in the world without regard for whether it
would ever be looked at again.

In short, the primary decision to be made was
whether to accept the absolute non-similarity
of picture and representation as given, devise
a more sophisticated list-structure and drop
the matrix representation altogether, or to
drop the list-structure and develop the matrix
representation to the point where it could be
very easily traversed to generate information
which was implicit within it. | opted for the
latter. A description is included in Appendix
2, though at the time of writing (December '78)
the Implementation is not yet complete.

25 The FUNCTION Of RANDOMNESS.

This section does not deal with any single part
of AARON: randomness is an active decision-
making principle throughout the program, and |

think it is important to say why that is the
case. As a preface, it might be worth recording
that beyond the Ilimits of a mathematically
sophisticated community most people evidently
view randomness in a thoroughly absolutist
fashion, and as the opposite to an equally

absolute determinism. There is a firmly-held
popular belief that a machine either does
exactly what it has been programmed to do, or
it acts "randomly". The fact that AARON
produces non-random drawings, which its
programmer has never seen, has given many
people a good deal of trouble.

What | mean Dby "randomness” IS the
impossibility of predicting the outcome of a
choice on the basis of previously-made choices.

It follows, of course, that "randomness"”, in
this sense, can never be absolute: if the
domain of <choice is the set of positive
integers, one must be able to predict that the

outcome will be a positive integer, not a cow
or a color. In AARON the domain of choice s
always a great deal more constrained than that,
however. The corollary to the notion of
randomness as a decision-making principle is



the precise delineation of the choice space: In
practice, the introduction into the program of
a new decision characteristically involves the
setting of rather wide limits, which are then
gradually brought in until the range iIs quite
small.

Randomness by Design and by Default.

Al researchers In more demonstrably goal-
oriented fields of intellectual activity must
obviously spend much time and effort in trying

to bring to the surface performance rules which
the expert must surely have, since he performs

so well. | am not in a position to know to what
extent "Let's try x" would constitute a
powerful rule in other activities: I am
convinced that it is a very powerful rule

iIndeed in art-making, and more generally In
what we call creative behavior, provided that
"x" Is a member of a rigorously constrained

set.

A number of artists in this century — perhaps
more Iin music than in the visual arts — have
deliberately and consciously employed
randomising procedures: tossing coins, rolling
dice, disposing the parts of a sculpture by
throwing them on the floor, and so on. But this
simply derives a strategy from a principle, and
examples of both can be found at almost any
point in history. It is almost a truism in the
trade that great colorists use dirty brushes.
Leonardo recommended that the difficulty of
starting a new painting on a clean panel —
every painter knows how hard that first mark is
to make — could be overcome by throwing a
dirty sponge at it (note 8). But one suspects
that Leonardo got to be pretty good with the
sponge! An artist like Rubens would himself
only paint the heads and hands in his figure
compositions, leaving the clothing to one
assistant, the landscape to another, and so on.
All the assistants were highly-qualified
artists in their own right, however. The
process was not unlike the workings of a modern

film crew: the delegation of responsibility
reduces the director's direct control, and
randomises the Implementation of his
intentions, while the expertise and commonly-

held concerns of
(note 9).

the crew provide the limits

Randomising in the Program:

rules.

Rules and Meta-

For the hunan artist, then, randomising is not
unconstrained, and therefore cannot be
characterised by the rule "If you don't know
what to do, do anything". Rather, one suspects
the existence of a meta-rule which says,
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"precisely define a space within which any
choice will do exactly as well as any other
choice". In AARON, the implementation of the
low-order rule has the following form:

(@ and b and ...n)

Then

p% of the time do (Xx);
q% of the time do (y);
r% of the time do (z),

which fills out the description of the format
discussed Iin PLANNING. The same frequency-
controlled format is used within the action

part of a
specifications:

production N determining

make a closed loop:

specification 1: number of sides
% of the time, 2 sides (simple loop)
3% of the time, 3 sides

specification 2: proportion
0% of the time, between 1:4 and 1:6
12% of the time, between 3:4 and 7:8

specification 3.
AARON has only the simplest

meta-rules, which are used
bounds of the choice space:

form of these
to determine the

if(a) lowbound is La, highbound is Ha
if(b) lowbound is Lb, highbound is Hb
if(n) lowbound is Ln, highbound is Hn

specification taken randomly between
lowbound and higbound

where a,b,n are varying conditions in the state
of the drawing. No consistent attempt has been
made to develop more sophisticated meta-rules.
In the final analysis, the existence of such
rules implies a judgemental view of the task at
hand, and they are consequently beyond the
scope of a program like AARON, which is not a
learning program and has no idea whether it is
doing well or badly.

The Value of Randomness.

What does randomness do for the image-maker?

Primarily, | believe its function is to produce
proliferation of the decision space without
requiring the artist to "invent" constantly.

One result of that function is obviously the
generation of a much greater nunber of discreet
terminations than would otherwise be possible,



and consequently the sense that the rule-set is
a great deal more complex than is actually the
case. A second result is that the artist faces
himself constantly with unfamiliar situations
rather than following the same path unendingly,
and is obliged to pay more attention, to work
harder to resolve unanticipated juxtapositions.
It is a device for enforcing his own heightened
participation in the generating process.

This last might seem less important in AARON:
the program's attention is absolute, after all.
But for the viewer the fact that AARON
exercises the function is quite important.
There is one level of our transactions with
images on which we respond with some astuteness

to what is actually there. The fact that AARON
literally makes decisions every few
microseconds — not binary decisions only, but
also concerning quantitative specifications —
shows clearly 1in the continuously changing
direction of the line, in every nuance of
shape, and succeeds in convincing the viewer

that there 1Is, indeed, an intelligent process
at work behind the making of the drawings.

****************

AARON produces drawings of an evocative kind.
It does so without user intervention; without
recourse to user-provided data; and without the
repertoire of transformational manipulations
normal to "computer graphics”. It remains now,
If not to propose a coherent theory of image-
making, at Ileast to pull together those
fragments of explanation already given into

something resembling a plausible account of why
AARON works.

This will be largely a matter of putting things
in the right places.

Art-making and Image-making

First: no adequate justification has yet been
given for the many references to art and art-
making, as opposed to images and image-making,
beyond saying that the first are a special case
of the second. What makes them special?

Art is a bit like truth. Every culture has, and

acts out, the conviction that truth and art
exist, no two cultures will necessarily agree
about what they are. There is no doubt, for
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example, that we use the word "art" to denote
activities In other cultures quite unlike what
our own artists do today, for the quite
iInadequate reason that those earlier acts have
resulted in objects which we choose to regard
as art objects. If it is surprisingly difficult
to say what art is, it is not only Dbecause it

is never the same for very long, but also
because we evidently have no choice but to say
what it is for us.

All the same, no justification is possible for

making reference to it without attempting to
say — once again! — what it is, and doing so
iIn terms general enough to cover the greatest
number of examples. Also, those terms should do
something to account for the extraordinary
persistence of the iIdea of art, which
transcends all of its many examples.

Briefly, my view is that this persistence stems
from a persistent and fundamental aspect of the
mind itself. It would be stating the obvious
here to propose that the mind may be regarded
as a symbol processor of power and flexibility.
| will propose, rather, to regard it as devoted

primarily to establishing symbolic
relationships: to attaching significance to
events, and asserting that this stands for

that. This i1s, surely, a large part of what we
mean by understanding.

As for art: in its specifically cultural
aspects art externalises specific assertions —
the number three stands for the perfection of
God, the racing car stands for the spirit of
modern man, the swastika stands for the semi-
mythical migrations of the Hopi people, or for
a number of other things in a number of other
cultures. But on a deeper Ilevel, art is an
elaborate and sophisticated game played around
the curious fact that within the mind things
can stand for other things. it is almost always

characterised by a deep preoccupation with the
structures of standing-for-ness, and a
fascination with the apparently endless
diversity of which those structures are
capable. What we see Iin the museums results
from a complex interweaving of the highly
individuated and the highly enculturated, and

in consequence any single manifestation is
bound firmly to the culture within which it was
generated: or it is rehabilitated to serve new
ends in a new culture. But ultimately, art
itself, as opposed to its manifestations, is
universal because it is a celebration of the
human mind itself.



The Embeddedness of Knowledge

Second: much of what has come out of the
writing of AARON has to be regarded simply as
extensions to the body of knowledge which the
program was intended to externalise. Writing it
was not merely a demonstrative undertaking, and

it is far from clear what has been raised to
the surface and what newly discovered. | have
regarded the program as an investigative tool,

though for present purposes the distinction is
not important.

It remains Impossible to give an
account of this knowledge other than by
reference to the program itself. There are
several reasons for this. In the first place,
this knowledge does not present itself
initially as predominantly prescriptive. The
first intuition of its existence comes in the
form of an awareness that an issue — closure,
repetition, spatial distribution — IS
significant: the program should be structured
in terms of that issue, as well as in terms of
all the other issues already contained. In this
sense the left parts of the productions might
eventually be taken together to represent the
set of issues which AARON believes to be worth
attending to in the making of an image. But
this stage comes much later, and by this time
an individual production functions as part of a
fabric of issues, with so many threads tying it
to so many knowledge sources, that a one-to-one
account of how it achieves its effect is

generally out of the question.

adequate

In fact, there is only a single example | can
call to mind in which an effect can be ascribed

with  certainty to a single production: a
particular class of junction In a meandering
horizontal line will infallibly generate strong

landscape reference, though only if the

s e

figure 17.
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branching at the junction goes off on the lower
side of the Iline (fig 17). This degree of
specificity is certainly exceptional, but Iless
powerful as an evocator rather than more so.
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In general, this particular class of junction
— It is more easily characterised visually
than verbally tends strongly to denote
spatial overlap: but the specific effect is
evidently quite context-dependant, and
dependant also upon the precise configuration
of the junction itself.

"Personality” as a Function of Complexity.

At the higher end of the scale of effects, the
problem of saying what causes what becomes more
difficult still. | have never been able to
understand how there can be such general
agreement about the "personality” which AARONS

drawings project, or why that "personality”
appears to be like my own in a number of
respects. Personality has never been an issue

on the conscious level of writing code, and |
know of nothing in the program to account for
it. Tb put the problem another way, | would not
know how to go about changing the program to
project a different "personality”.

| assume that the personality projected by an
Image is simply a part of a continuous spectrum
of projection, not distinguishable in type from
any other part. But | am forced now to the
conclusion that these more elusive elements of
evocation — personality is only one of them,
presumably are generated out of the
complexity of the program as a whole, and not
from the action of program pa7ts: that given an
adequate level of complexity any program will
develop a "personality". This "personality” may
be more or less clear in individual cases, and
may perhaps depend upon how many people have
worked on the program AARON is almost
exclusively my own work — but it will In any
case be a function of the program, and outside
the willful control of the programmer. If this
IS the case it seems extremely unlikely that
any complete causal account of the workings of
a program would ever be possible.

The Continuousness of and

and image reading

Image-making

Third: | want to return to the question which
lies at the root of this work. What constitutes
a minimum condition under which a set of marks
will function as an image?

The reader will have noted that much of what
has been written here appears to bear as much
upon the business of image-reading as it does
upon image-making. There is no contradiction:
the central Iissue being addressed Is the
Image-mediated transaction itself, and Iimage-
making in particular has no meaningful, or
examinable, existence outside of that



transaction. Knowledge about Image-making _is
knowledge about image-reading: both rest upon
the same cognitive processes. Thus the skilled
artist does not need to enquire what the viewer
sees Iin his work: the satisfaction of his own
requirements guarantees it a reading iIn the
world, and the explicit individual readings
which it will have are irrelevant to him. The
trainee artist, the student, on the other hand,
frequently responds to his teacher's reading of
his work by objecting, "You're not supposed to
see it that way", evidently unaware that the
reading does not yield to conscious control.
Lack of skill in image-making more often than
not involves a failure to discern the
difference between what is in the image-maker's
mind and what he has actually put on the
canvas.

It Is equally true, | Dbelieve, that image-
reading has no meaningful existence outside the
transactional context: not because the whole
event is always present — it almost never s
but because every act of image-reading is
initiated by the unspoken assertion "What | see
is the result of a willful himan act". That is
a part of what we mean by the word "image".

However much we may amuse ourselves seeing
dinosaurs in clouds or dragons in the
fireplace, we have no difficulty in

differentiating between marks and shapes made
by man, and marks and shapes made by nature,
and we do not hesitate to assign meaning in the
one case where we deny it in the other: unless
we belong to a culture with a more animistic
attitude to nature than this one has.

In short, | believe that the first
of the condition In
undenied assumption of human will

requirement
the question is the
(note 10).

The rest of the condition is given by the
display of behavior which draws attention to a
particular group of cognitive elements. In
other words, evidence of cognitive process may
be substituted for the results of an act of
cognition. An actual desire to communicate

which may include the simple desire to record
the appearance of the world — is not a
necessary condition.

AARON's strength lies in the fact that it s

designed to operate within, and feed into, the
transactional context, not to reproduce the
aesthetic qualities of existing art objects. It
takes  full advantage of the viewers'
predispositions and does nothing to disabuse
them: indeed, it might fairly be judged that
some parts >f the program — the simulation of
freehand dynamics, for example are aimed
primarily at sustaining an illusion (note 11).
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But the illusion can only be sustained fully by
satisfying the conditions given above, and once
that i1s accomplished the transactions which its
drawings generate are real, not illusory. Like
its human counterpart, AARON  succeeds in
delineating a meaning-space for the viewer, and
as In any normal transaction not totally
prescribed by prior cultural agreements, the
viewer provides plausible meanings.

Standing-for-ness.

Fourthly: there is a multitude of ways in which
something can stand for something else, and in
adopting the general term "standing-for-ness" |
intended for the moment to avoid the excess
meanings which cling to words like "symbol",
"referrent”, "metaphor", "sign", and so on:
words which abound iIin art theory and art
history. An 1image, | have said, is something
which stands for something else, and of course
it Is quite plain that | have been discussing
only a very small subset of such things.

What are the defining characteristics of this
subset?
Before attempting to answer that question, it

should be noted that, while AARONs performance
IS based upon vision-specific cognitive modes
(note 12), there are two closely related
questions which cannot be asked about AARON at
all.

Images of the World and its Objects.

The first of these has to do with the fact that
in the real world people make images of things.

Hov do people decide what marks to make In
relation to those things?
It is difficult to avoid the conclusion that

Image-making as a whole is vision-based, even
though it bears directly on the issue of
appearances only occasionally. It is my belief
that even when an 1Iimage 1Is not purposively
referential — as is the case with AARON — or
when the artist seeks to refer to some element
of experience which has no visual counterpart,
it is his ability to echo the structure of
visual experience which gives the image its
plausibility (note 13).

The Persistence of Motifs

The second question has to do with the fact

that actual image elements, motifs, have been
used over and over again throughout human
history, appearing in totally disconnected

cultural settings, and bearing quite different



figure 18.
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meanings as they do so. What is it that makes
the zigzag, the cross, the swastika, squares,
triangles, spirals, mandalas, parallel lines,
combs (fig 18), ubiquitous, so desirable as
imagistic raw material?

My own answer to this question is that the
cognitive modes and their dependant behavioral
protocols are absolutely ubiquitous, and that
the recurring appearance of these motifs is

figure 19.

hardly even surprising (note 14). In fact, we
have only to start cataloguing the motifs to
realize that most of them are simply formed
through the combination of simple procedures.
The swastika, for example, is both cross and
zigzag, just as the mandala is cross and closed
form, and the so-called diamond-backed
rattlesnake motif of the Californian Indians is
a symmetrically repeated zigzag (fig 19).

Taken together, these two questions point to
the dualistic nature of image-making. |If, as |
believe to be the case, it can be shown that

the representation of the world and its objects
by means of images follows the same cognition-
have

bound procedures as the simpler images |
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been discussing, then it will be clear that the
form of an image is a function both of what is
presented to the eye and of the possession of
appropriate modes.

Representation.

| said at the outset that my conclusions would
bear upon the nature of visual representation,
as distinct from what the Al/Cognitive Science
community means by the word ''representation”.
It is still the case that my specific concerns
are with what people do when they make marks on
flat surfaces to represent what they see, or
think they see, iIn the world. All the same,
some speculation is justified about possible
correspondences between the two wuses of the
word.

It is important, for example, to note that the
lines which the artist draws to represent the
outline of an object do not actually correspond
to its edges, in the sense that an edge-finding
algorithm  will replace an abrupt tonal
discontinuity with a line. In fact, the edges
of an object in the real world are almost never

delineated by an unbroken string of abrupt
tonal discontinuities. | f the artist is
unperturbed by the disappearance of the edge,

it is likely to be because he isn't using that
edge, rather than because he has some efficient
algorithm for filling in the gaps. Similarly,
most of the objects in the world are occluded
by other objects, yet it would not normally
occur to the artist that the shape of a face is
the part left visible by an occluding hand (fig
20).

figure 20.



The face evidently exists for him as a
cognitive unit, and will be recorded by means
of whatever strategies are appropriate and
available for the representation (note 15).

It IS as true to vyour
"representation” as to mine, not only

meaning of
that it

rests upon the possession of appropriate and
available strategies, but also that new
strategies may be developed to fit particular

concerns. Both are bound by entity-specific
considerations, however: considerations, that
Is to say, which are independant of the
particular event or object being represented
and take their form from the underlying
structures of the entity — the artist's
cognitive modes on the one hand and the
structural integrity of a computer program on
the other.

What is a Representation "Like"?

It could not be seriously maintained that a

computer program is "like" a human being in a
general sense, and it should not be necessary
to point out that a representation Iin my
meaning of the word is not "like" the thing
represented, other than in precisely defined
senses of likeness. That may not be quite
obvious, however, when we consider the idea
that a portrait is "like" the sitter. Even

though we may be careful enough to say that the
portrait LOOKS I|like the sitter, or that a
musical passage 3SOUNDS like the rustling of
leaves, we tend to stop short of that level of
detail at which it becomes clear that the
appearance of a painted portrait and the
appearance of a person actually have very
little iIn common. A representation may be about
appearance, but we never confuse the
representation with the reality, no matter how
"lifelike" it 1Is. In fact, we might rather
believe that all representations of a given
class are more like each other than any of them
Is like the thing represented. Life follows its
laws, representations follow theirs.

What is an Image?

The purpose of an act of representation is to
draw attention to some particular aspect of the

represented object, to differentiate that
aspect from its context, not to reconstitute
the object itself. To that degree we might

regard a visual representation as constituting
a partial theory of that object and its
existence, just as we might regard a computer
program as constituting a theory of the process
it models. But neither the artist nor the
program designer has any choice but to proceed
in terms of the modes which are available or
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which they are capable of developing. In the
case of the visual representation, the making
of an image, | have tried to demonstrate the
cognitive bases of those modes, and also,
through my own program AARON, to demonstrate
their raw  power In the Image-mediated

transaction.

That, finally, defines my use of the word
"Image". An image is a reference to some aspect
of the world which contains within its own
structure and in terms of its own structure a
reference to the act of cognition which
generated it. It must say, not that the world
Is like this, but that it was recognised to
have been Ilike this by the image-maker, who
leaves behind this record: not of the world,
but of the act.




APPENDIX | TOE TURILE SYSTEM.
When the real turtle is not running, the
program simulates its path, and calculates

where it would have been in an error-free world
after completing each command. In this case it
substitutes a chord for the arc which the real
turtle would have traced out. (The straight
line segments which may just be visible in the
iIllustrations here are due to the fact that
they were photographed off the Tektronix 4014
display, not from an actual turtle drawing.)

The Navigation System.

The navigation system is correct to about .2
iInches: that is an absolute determined by the
sonar operating frequency — about 40KHz — and

does not change with the size of the drawing.
Even with so coarse a resolution the feedback
operation is efficient enough for the turtle to
do everything on the floor that the program can
do on the screen; indeed, if the turtle s
picked up while it is drawing and put down in
the wrong place it is able to find its way back
to the right place and facing the correct
direction.

The Dynamics of Freehand Drawing.

There are several complexities in this part of
the program which are worth mentioning. One of
them is that the program has to be able to
accomplish dramatic shifts in scale in the
drawing, to make small things which look Ilike
small examples of big things: smoothly-curved
closed forms should not turn into polygons as
they get smaller. This is required both on the
iIssue of shifts in information density and also
to maintain implied semantic relationships
between forms.

A second complexity is that the movement of the
line should convincingly reflect the dynamics
of a freehand drawn line, and this should mean,
roughly, that the "speed" of a line should be
inversely related to the rate of change of
curvature: the pen should be able to move
further on a single command if it's path is not
curving too radically. (The converse of this
is that the amount of information needed to
specify an arbitrary line should be a function
of its rate of change of direction, with the
straight line, specified by its two end points,
as the limiting case.)
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Movement Scaling.

Third, the pen should proceed more "carefully”
when it is close to some final, critical
position than when it has relatively far to go
and plenty of time left to correct for
carelessness. This, too, implies a scaling of
movement in relation to the state of the local
task. Finally, there is the practical problem
that for any given number of cycles of a
stepping pattern, the actual distance traversed
by the pen will vary with the ratio of the
turtle's two wheel speeds. Unfortunately, this
relationship is not linear, and neither does it

provide a  useful simulation of freehand
dynamics.
Briefly, the line-generating procedure

concludes that, given the present position and
direction of travel of the pen in relation to
the current signpost and to the final
destination, it will be appropriate to drive
the two wheels at stepping rates r1 and £2,
taking n steps on the faster of the two. In
doing so""it takes account of all of the above
considerations. The ratio determined for the
two speeds is a function of two variables: the
angle A Dbetween the current direction and the
direction to the current signpost, and a
scaling factor given by the remaining distance
Dd to the final destination as a proportion of
the original distance Do (fig 11). This speed
ratio then becomes one of the two variables in
a function which yields the number of steps to
be taken — the distance to be travelled — by
the fast wheel: the other variable being the
relative size of the block of space allocated
to the current figure.




These functions have to be tuned with some care and the geometry of the current turtle

to be sure that each variable is correctly determines that it can only change direction in
weighted, and to compensate for the turn- increments of about one sixth of a degree. (The
distance ratio of the turtle geometry itself. turtle was not until recently interrupt-driven,
But none of this — or any other part of the and for design reasons this incremental
program  — involves any significant direction-change factor was one degree in the
mathematical precision. There are only fifteen earlier version.) Everything relies upon the
stepping rates available,  synmetrically feedback mode of operation to provide
disposed between fast forward and fast reverse. correction and to prevent error accumulation.
The  whole  program, including extensive The point is that a good car driver can drive a
trigonometric operations, uses Integer car with sloppy steering as well as a car with
arithmetic — this for historical reasons as tight steering up to the point where feedback
well as limitations of available hardware — correction cannot be applied fast enough.
APPENDIX I — MATRIX REPRESENTATION.

This description is given here primarily because it offers some insight into the kinds of con-
siderations which the program believes to be important, and the way in which these considera-
tions are accessed: not because there is anything particularly original from a data-structure
point of view.

Much of the detail of the implementation is demanded by the word-length of the machine, and

would go away in a larger machine. The intent is to make all the information relating to a par-
ticular part of the drawing effectively reside in a particular cell.

The program uses the single words representing matrix cells in different ways according to what
IS happening in the cells:-

[——— event type: O=simple

1=complex

A "simple" event means, essentially, that all the data will be contained within this one word,
although it will be seen that its simplicity relates to its use in a more meaningful sense:-

L— cell use type: 0O=unused
1=used
simple event

Before beginning work on the drawing, the program "roughens" the surface: that is, it declares
some parts to be unuseable for the allocation of space to a new figure, although a developing
figure may go into this "rough" space. This is done In order to maximise the rate of change of

density across the image:-
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I | [——space useability: O=useable

1=rough

cell unused
— gimple event

"Use® may involve either a line or some special spatial designation:=

UULARERRRRRARRRE

[TL
space use type: (O=space
1=line

cell in use
l—— simple event

In ecither case, the cell will now have a figure identifier associated with it. The new version

of the program uses less figures than the earlier one, and develops them further: a maximum of
32 figures is permitted:-

O[OJATR[ T T T T fXIXIXIXIX
'S
[__ [———-figure ID
space type:

00=unused space inside closed figure
0l=shaded space inside closed fiqure
10=shaded space around figure
11="free" shaded space

L space

cell i1n use
simple event

If the cell contains a line, then it can be dealt with as a simple event provided that it is not
a line junction of a special kind. In this case the entry designates a line function type:-

P T T T
& f ? » A
L L— fiqure ID

backward 1ink
L forward link
tline function type:
000=boundary, closed form
0U0l=element of open form
010=line dividing closed form
Oll=open external appendage to closed form
100=closed external appendage to closed form

[ﬂ. 101=open internal appendage to closed form

P

i

110=closed internal appendage to closed form
interiority (whole fiqure is inside another figure)
line
cell in use
simple event
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V Linking.

The forward and backward links are a very important device here. Lines are mapped onto the
matrix as they are drawn, using an adapted form of Bresham's Algorithm to ensure that
strings of cells never include corner-to-corner contiguity. This also means that for any
given cell, the line it contains must have entered it from, and will subsequently Ileave it

into, only one of four cells: thus the four-bit linking permits a complete traversal of any
series of line segments not involving a complex event.

prppppppppppppp

| I
— 15-bit pointer
— complex event

At this point, the single word is inadequate, and it is used as a pointer, words now being
allocated in pairs from a freelist. Here again, one level down from the matrix, the words
will be variously decoded. In particular, in the event that the cell Is occupied by two

figures, the two words are each used as pointers to new pairs of words, one for each fig-
ure:-

PPPPPPPPPPPPPPP PPPPPPPPPPPPPPP

| LlS-bit pointer (figure a) I-15---bit pointer (figure b)
multiple use

A cell at this level may contain complex events from one or both of two classes:
connective and configurational. Configurational events frequently involve order-2
nodes — nodes, that is, which fall on a continuous line — and include sharp an-
gles, strong curvature, and so on. in practise, the program forces complex events
so that they always occur within an 8-cell displacement in x and vy from another
cell, and the location of the next event can then be recorded rather cheaply:-

OIETeTeTe < FTeere T T T T
1 1 1 r 1 1 t 1 J

-

b~displacement
L1 f-displacement

i—-figure ID
L backward 1link
b forward link
L—— configuration code:
closed or open, 1 bit
sense, 1 bit
curve, angle, neither, 2 bits
max or min for the figure, 1 bit
L - order-2 node
L single figure
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"Sense", here, means convex or concave if the line is the boundary of a closed fig-
ure, and up/right or down/left if it is not. If this is a figure node of any order
other than two, one entry will be needed for each adjacent node:-

Hﬂlw T[PTRTRIPIPIPIPIPIPIPIPIPIPIPIP
l 1
I L L——ls-bit pointer
pointer

L—figure ID
node order
L configuration code
L__:—-—not order-2

single figure

Ik ki 2 S B w

[- J pointer flag
next-node displacement

backward 1link

[ - forward link

connection designation for this entry
1——-poim:er flag

in addition to the displacements which chain this node to each of its connected nodes.
This means that the traversal of the figure as it is represented by the matrix can con-
tinue from this point until the next node is reached.

Thus, the entire structure Is contained essentially within the matrix, and the short
lists which may be tacked onto any single cell serve merely to extend the effective

capacity of that cell.

Ideally, this matrix should be as fine as possible: since the resolution of high-grade
video is only 1024x1024, a matrix of this size would obviously constitute an extremely
good representation. However, there are two considerations which make so fine a grain
unnecessary. The first is that the program keeps a full list of all the actual coordi-
nate pairs for each figure as it is drawing it, and can access it should some very pre-
cise intersection be required. The second is that the program is designed to simulate
freehand drawing, not to do mechanical drawings, and once a figure is completed some
approximation to it for purposes of avoidance or even intersection is unobjectionable.
The maximum error induced by assuming a point to be at the center of a cell in a matrix
of 90x160 will be about 7/8th of an inch in a sixteen-foot drawing: only three times the

thickness of the line.
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NOTES ON TOE TEXT

note 1. The word "representation” is used here
iIn @ more general sense than it now carries
within the A.l. community: the problem of
formulating an internal (machine)

representation of some set of knowledge differs
from the more general problem primarily in its
technological aspects.

note 2. "The Art of Artificial Intelligence: 1,
Teams and Case Studies of Knowledge
Engineering," Ed Feigenbaum, Proceedings of
IJCAIS, 1977; pp.1014-1029.

note 3. In the decade before | became involved
In my present concerns my work was exhibited at
all of the most serious international shows,
and | represented my country at many of them,
including the Venice Biennale: as well as in
some fifty one-man shows in London, New York
and other major cities.

note 4. Different
speaking, In

from each other, loosely
the way one might expect a human

artist's drawings to differ one from another
over a short period of time.
note 5. Written in "C", under the  UNIX

operating sustem.

note 6. | am referring here to differentiations
performed in relation to the image, not In
relation to the real world, with which the
program has had no visual contact.
note 7. The program does not attach semantic
descriptors to the things it draws: the terms
"penumbra”, "boulder" and so on are my own
descriptions, and are used here for the sake of
simplicity.

note 8. Significantly, from the point of view
of my argument here, the dirty marks were
iIntended to "suggest" the elements of a

composition.

note 9. The one unconstrained randomising agent
in this scenario, the final cutting of the film
by the producer rather than the director, has
also demonstrated itself to be devastatingly
non-creative.

note 10. "Undenied" is stressed here because
there exists an odd case in which the will of
the artist is to produce objects which demand
the contemplation of their own qualities for
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their own sake — what they are rather than
what they stand for — and which thus seek to

deny the viewer his normal assumptions. To the
degree that this aim can actually be achieved
the resulting object could not properly be
called an image, and | doubt whether aesthetic
contemplation could properly be called reading.
Thus much of XXth Century abstract art falls
outside this discussion.

note 11. It is worth noting, though, that AARON
did mechanical straight-line shading for about
two vyears — it ran faster that way — and in
that time only two people ever remarked on the
iInconsistency.

note 12. | will leave aside the interesting
question of whether there are not more general
underlying structures which are common to all
physical experience. It Is presumably no
accident that terms 1 ike "repetition”,
"closure”, and others | have used in relation

to visual cognition are freely used in relation
to music, for example.

note 13. The control of the rate of
information density across the surface of the
image, to which | referred earlier, is the most
powerful example | know in this regard. The eye
Is capable of handling units as small as a
speck of dust and as large as the sky, but the
processes which drive the eye seem always to
adjust some threshold to vyield a preferred
distribution spanning only a few octaves.

change of

note 14. In fact, the more theatrical
explanations which range  from  world-wide
migrations to the influence of extra-

terrestrial voyagers are not even necessary.

note 15. He is unlikely to treat the boundary
between face and hand as part of the face, but
as part of the hand, and may very well indicate
the full boundary of the face as if he could
actually see it.



FLATS, A MACHINE FOR NUMERICAL, SYMBOLIC
AND ASSOCIATIVE COMPUTING

Tetsuo Ida |,

Goto™'* ™,

* Institute of Physical
Saitama 351 Japan

Department of
University of Tokyo,

Eiichi

* %

7-3-1,

Kei Hiraki

and Chemical Research, 2-1,

, Masayuki Suzuki and Nobuyuki Inada

Hirosawa, Wako-shi,

Information Science, Faculty of Science,
Hongo, Bunkyo-ku, Tokyo 113 Japan

Abstract

Functional aspects of a machine called FLATS, presently
FLATS aims to efficiently run both numerical and algebraic programs.
look-up computation,
introduced for advanced numerical,

scribed.
variable precision arithmetic, table
single-hit content addressed tables are

computing. Hashing hardware,
features.
1. Introduction

Numerical computation and symbolic formula mani-
pulation are the major practices in scientific
computation. While numerical computation has a

long history, computer-aided algebra or large
scale formula manipulation has become practical
only recently.

In this paper, we describe the architecture of
FLATS, a machine which aims to efficiently run
scientific computations. We consider Fortran
and Lisp (L) as major scientific programming

languages for reasons:

(1)
(1)

(F)

Scientific numerical programs are written
mostly in Fortran.

Lisp is the major host language used for
symbolic and algebraic systems such as
REDUCE' and MACSYMA’. Moreover, Lisp has
been used for writing a very large number

of programs in the Al area.

Hence, high efficiency in running programs writ-
ten in 'F" and 'L* is considered a minimum re-

quirement, which is symbolized in the first two
letters of 'FLATS'. 'A' in FLATS stands for
associative capabilities; ‘T' and 'S' stand for

Table, Set and String which are the data types
used in FLATS.

Many efforts have been made to increase the speed
of computations by introducing parallelism®'**'>,
iIn which we include the pipe line architecture
as a specific implementation (of parallelism).
Vectorized operations on floating and fixed

point numbers of fixed bit length are recognized
as a class computations suited for highly paral-

lel machines. It should be noted, however, that

tag mechanism and hardware
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(June 1979) in the design stage, are de-
Overflow free and
and associative computation based on

algebraic and symbolic

list processing are used to realize these

highly parallel algorithms are not known for or
not applicable to certain computations. For

example, take the Euclidian gcd algorithm. The
gcd of two integers TQ and rj, say, is obtained
by successively computing the remainder sequence

"O» "I» "2» "3'r("li *° e
divided by r )
O with r

remainder of r -

until it reaches the first zero

remainder M giving the gcd.

Parallel schemes faster than the Euchidian al-
gorithm are not known. Hence, for gcd, a ma-
chine equipped with a single sophisticated high
speed remainder unit would do better than paral-
lel machines with hundreds of slower units. List
processing, arbitrary precision integer arith-
meter, and variable precision floating point
arithmetic are other examples of operations which
are not suited for contemporary highly parallel
machines. The objective of FLATS is to ef-
ficiently run those operations which are not

suited for highly parallel machines.
FLATS is basically a single instruction stream
machine and parallelism shall be pursued only to

a limited extent such as advance control, paral-
lel hashing and parallel interpolation but it
shall not incorporate parallel processor arrays.

FLATS may hence be regarded complementary to the
highly parallel machine approach.

The numerical support to algebraic manipulation
systems is indispensable since the process of al-
gebraic manipulation requires exact calculation
of intermediate (and final) numerical coef-
ficients as opposed to approximations done by
conventional fixed precision floating arithmetic.



Furthermore, the results of the algebraic compu-
tation must often be given to numerical compu-
taion systems.

Functional requirement for FLATS is therefore to
incorporate the different characteristics of the
two languages (F and L), e.g. compile-time vs.
run-time data type checks, and static vs. dynamic
storage allocation, into a single architecture,
without impairing the efficiency of either one.

Besides the advanced numerical features, associ-
ative capabilities have been found to be very
powerful® in efficiently carrying out basic opera
tions in formula manipulation.

We first give in section 2 functional specifica-
tions of FLATS from users' point of view, and in
section 3 consider the implementation from archi-

tectural point of view.
2.  FLATS from users' point of view
2.1 OQOverflow free and variable precision com-

puting

We observe that most contemporary computer sys-
tems neither provide adequate means for handling
(1) overflows, (2) precision higher than built-
In standard precisions, e.g. double or quadruple,
nor (3) variable precision arithmetic. The de-
sign and implementations of some important class
of algorithms’'®'® are hampered by the lack of
the systematic support of these three features.

To remedy such defects, FLATS

following means:

IS provided with

- Integers are treated with automatic multiple-
precision.
- Exponents and mantissas of floating numbers are

expressed in integers as stated above, hence
practically no overflow would occur.
- A variable precision scheme' is adopted, in

which precision is specified by a status word
called an ASV (Arithmetic Status Word), which
is part of the POV (Program Status Word).

In an
(Bignum Fortran).

These features are made available to users
extended FORTRAN called BFORT

2.2 Tabulative computing

Before high speed computers came into extensive

use, look-up of mathematical tables was an es-
sential process of numerical calculation. This
fact is in quite contrast to 'on-demand' comput-

iIng prevalent today. To pursue further the
speed-up of the present numerical computation,
table look-up iIs becoming again a practical
method, owing to the recent advances in memory
fabrication technology. In FLATS, we provide
following means for tabulative computing'’;
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(1)

Tabulative computation of numerical func-
tions with a floating number argument such

as x-l, /;; ex, sin x, log x and atan x.
Associative tabulation for (sparse) integer
and/or symbolic arguments.

(11)

Linear (or quadratic) interpolation shall be used
for 24 bit (single length) mantissa and cubic
interpolation for 48 bit (double length) man-
tissa. Namely f(x) is to be computed by f(x) =
f(xg) + f'(xp)Ax + (1/2)f''(xp)Ax? + (1/6)f''"
(xo)Ax3 where x = x5 + Ax and xg 1s the most
significant 12 bit part of the 48 bit mantissa

x and each term is assumed to be less than the

previous term by a factor of 2-12. The coef-
ficients f, f', f'' and f''' are tabulated (in
ROM or RAM). This cubic interpolation can be
made within time of two stages of multiplications
by introducing parallelism:

Stage 1. Read the coefficient table and the
table of cubes of the 12 bit (in precision) Ax3
and compute the 24 bit Ax? in parallel. (Table
look up is assumed to be no slower than multi-
plication.)

Stage 2. Multiply and add in parallel.

For computing the 48 bit inverse y = x_l, this
scheme is faster than Newton iteration, which
would consist of five stages of successive
operations:

Stage 1. Read the 12 bit approximate inverse

yo = x-l from table.

Stage 2,3. Two multiplications to get the 24
bit inverse y; = (2~-xyj)yp.

Stage 4,5. Two multiplications to get the full
48 bit inverse y = (2-xy))y;.

When a function, say g with (sparse) integer or
symbolic arguments, 1s computed in tabulation
mode, the value v = g(il, ...,in) is tabulated

in a content addressed table (CAT), using the
tuple (g, il’ coss in) as a search key 1in the
CAT. In the subsequent computations of g with
the same values of the arguments, the value v 1is
fetched immediately from the CAT. Associative
tabulation effectively and automatically speeds
up recursions by avoiding repetitive computation.
For example, the notoriously slow (exponential
time) recursive computation of the Fibonacci
numbers:

procedure Fib[n] = [n<l -> 1;

T -> Fib[n-1] + Fib{n-2] ]
is turned into a fast algorithm (linear time for
the first evaluation and 0(l) time for the sub-
sequent evaluations).

2.3 Associative capabilities and built-in
data types

Starting from the pioneering associative language



LEAP', a variety of associative language and
architectures for the associative processing have
been proposed and implemented.

We consider an AMTI (Address mapping table) and
an h-op hash table (Fig. 1) as the two basic
entities for building associative data struc-
tures'®. We define an AMT as a mapping from

bit patterns of fixed sizes (actually 32 bits/64
bits) into addresses (consecutive integers). An
AMT may be regarded as a single-hit associative
memory. A multi-hit associative scheme such as
found in LEAP is to be dealt with by software,
making use of arrays, linked-lists and AMT's.
Table 1 gives the built-in data types in FLATS.
The data types STR, INT, FLOAT, VECT (one di-
mensional array) are the same as in most other
languages except that INT and FLOAT are of ar-
bitrarily high precision as stated in 2.1.

PAIR is the same as in Standard Lisp'®.

The data types prefixed by H denote those types
obtained by hashing (h-op). h-type objects are
guaranteed to be unique by virtue of hashing.
The Lisp concept of 'intern' corresponds to that
of h-op with the following differences; that
h-op does not allow remob15 and that h-op can
apply to all data types in FLATS, whereas Intern
op in Lisp 1.5 is applicable only to atomic
symbols, h-type objects must be read-only so
as for the hashing search mechanism to work
properly. Hence, HSIR objects are the same as
atoms of Lisp; i.e. every different string of
characters is represented as a unique pointer

to a table called obllst Iin Lisp 1.5, or to name
tables in assemblers and compilers. HINT and
HPAIR objects are multi-precision integers and
hashed lists, respectively. Equality check of
two long integers of type HINT or two lists of
type HPAIR is reduced to that of two pointers.
HPAIR and HINT can be made by the shared linked
Ist method as shown in Fig. 1.

nsertion, deletion and membership test of an
AMT entry correspond to the same operations on
a set. A 'set' created by h-op (represented
by an AMT) is given®'® and shown in Fig, 1.
In FI;ATS the hashed AMI (HAMT) is a synonym to
'set .

A CAT consists of an AMI and RAM (random access
memory, i.e. hardware term for VECT sharing the
same addresses)s A CAT can be hashed similarly

to an AMT and the resultant data type is called
HCAT.

These data types, especially the hashed types,
have been found to be very useful in polynomial
manipulation. For example, take a polynomial
P = 3AX* + 4 BY’, where AX®* and BY’® are term
identifiers: and 3 and 4 are coefficients.
There are many (non-unique) ways to represent a
term identifier in list forms owing to the com-
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mutative nature of multiplication. sz, for
example, 1s represented in a list form ((A 1)

(X 2)) and ((X 2) (A 1)) corresponding to AX?

and XA respectively. The HCAT representation
{A:1, X:2} 1s unique (AX? and XA are represented
by a pointer to a unique HCAT structure). In
this case, P is represented uniquely by nested
HCAT's as

P= {{A:1,X:2}:3, {B:1,Y:3}:4}.

A FLATS FORTRAN program for multiplying poly-
nomials in the HCAT normal form can be written in
9 lines:

FUNCTION CATMULT (P,Q)
C = MKCAT(0)
SWEEP 1, P, TP=KEY, FP=VAL
SWEEP 1, Q, TQ=KEY, FQ=VAL
T = H(CATADD(TP, TQ))

1 C(T) = C(T) + FP*FQ
CATMULT = H(C)
RETURN
END

Here SWEEP 1is similar to DO in FORTRAN; SWEEP
scans all the occurrences of keys in the speci-
fied CAT's P and Q. Function H corresponds to
h-op above mentioned. This program would give
the best known time complexity for multiplying
multi-variate polynomials®.

3.
3.1

FLATS from architects' point of view

Tagged architecture

A practical solution for efficient detection of
the built-in data types given in 2.3 is a tagged
architecture '°''" Table 2 gives tags to be used
in FLATS.

Take numerical computation for example. Arith-
metic operations on small numbers tagged as
"sint" (short integer) or "afloat" (short float-
ing number) are to be made with standard hardware
at high speed, while those on tagged "big" num-
bers are to be trapped and handled by micro-
programming. Since "sint" or "sfloat" numbers
are likely to appear with high probability in
most programs, the slow down factor due to the
"big" numbers is very small.

Bit-loss, a common objection against tagblt(s),
can be remedied by using a specific exponent
value as a 'trapping tag*. |In the case of 7-bit
exponent -64 <. p < 63 FLOAT representation, p -
-64, +63, +62 are used as the tags to denote data
types other than "sfloat" with the mantissa part
having different meanings given in table 2. The
effective bit loss is only log,(123/128) - -0.06
bits Iin this scheme.

3.2 Hashing Hardware

AMT's can be implemented either by using CAM



(content addressable memory) chips or by hashing.
In a previous paper'®, we presented a hardware
hashing scheme which makes use of parallel read-
out mechanism of memory. A parallel hashing
hardward consists of multiple RAM banks, hash
address sequence generators and a hashing con-
trol unit. A single comparator is attached to
every RAM bank (cf. Fig. 2) in the parallel
hashing hardware, whereas in CAM chip such as
Intel 3104 a comparator is attached to every
memory cell. Even at a chip level, a CAM re-
quires several times more gates than a RAM chip.
Hence total number of gates required for realiz-
ation of CAM is greater by at least one order
of magnitude than that for the hash table, with
no significant speed gain over parallel hashing:
The items in the hash table are searched in
average 0(1) memory cycle (a quantity independent
of the number of items entered in the hash
table), in comparison with strict 0(1) used to
search items entered in CAM. Since we are
interested in the overall efficiency in our
iIntended applications, it is more advantageous
to invest the resource on enlargement of RAV
memory than on still expensive CAM chips. More-
over, h-op of complex types such as AMT, CAT
and VECT cannot be performed with CAM's.

Figure 2 shows the schematic diagram of the par-
allel bank hashing hardware of FLATS. Hashing
Is essentially the cycle (hash probe cycle) of
(i) hash address generations, (ii) memory
accesses, (1ii) key comparisons and (iv) judge-
ment of termination based on the comparisons.
The hash tables, (i.e. AMT's and CAT's and an

h-op table), are taken in main memory consisting
of J banks. In a simple parallel hashing scheme
with J banks, a single hash address generator

and J comparators are used together with some
auxiliary hash sequence control circuits. To
handle key deletion, detectors of reserved words
for denoting empty and deleted states are provid-
ed in each bank.

Assuming that the operations (i) - (iv) are
performed in a single memory cycle, the perform-
ance of parallel hashing is given in number of
memory cycles used until the completion of the
probe cycles. Figure 3 shows that the average
number of memory cycles in a successful search
(finding a key in the table) in the worst case'®
We presume the worst average performance in the
performance evaluation when key deletion and in-
sertion are repeated alternately. It shows that
the basic hash operations can be performed in a
time comparable to an indirect addressing oper-
ations, e.g. for J = 16 and the load factor of a
hash table a * 0.9. Note that the hashing hard-
ware handles a fixed length key at a time. For
handling variable length strings, arbitrarily
long integers and lists, a shared linked list
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above mentioned
hardware.

Is used with the parallel hashing

3.3 Hardware support for list processing

The hardware mechanisms essential
up of Lisp are following;

(1)

to the speed-

run time data type checking,

) hardware stack,

) high memory bandwidth

) segmented memory space with automatic bound-
ary checking for arrays etc., and
instructions for Lisp primitives,
car, cdr, cons and atom.

A~ WOWN

(
(
(

such as

(9)

Note that the tagged architecture given in 3.1

Is a solution to point (1).

As for point (2), we incorporate in FLATS both
general (global) register and stack frame machine
architecture. The basic op codes consist of four
8 bit fields as (op, rq ry, r3), where rq, ry, r3
are register addresses each specifying either one
of 128 global registers or one of 128 registers
on the current stack frame. While the global
registers are used to hold global entities, the
stack registers are used for local entries and
for (recursive) subroutine linkage.

In contrast to the two register address oper-

ations, rq: m op(rqy, ry) notably used in IBM
360/370, three register address operations
rs: = op(rq, rp) are used in FLATS. The three

register scheme would greatly reduce the number
of register to register transfer operations. For
example, while no register to register transfers
are needed in the three register scheme for the
following codes

a:=add(x,y);

b:=sub(x,y);

c:=raul(x,y);

d:-div(x,y); |,
50% of the corresponding codes would be register

to register transfers in the two register scheme
as in

a=x,; a;=add(a,y);

b:=x; b:-sub(b,y);

c:-X; c:-mul(cry);

d:-x; d:-div(d,y);.

The unit of memory banking used in hashing is
actually taken to be the bit width of a single
list cell (64 bits). Expansion of memory to in-
crease the degree of parallelism (i.e. to in-
crease J) will speed up hashing operations as
shown in Fig. 3; this does not imply the require-
ment of higher memory bandwidth since the com-
parators are provided in the memory units.

Need for segmentation is clear since the main
memory is conceptually divided into several seg-
ments; AMT's, CAT's, arrays, list areas, program
space and so on.



Fundamental Lisp primitives given above are ex-
ecuted in a single memory cycle. 1In fact, when
run-time data type check is made by hardware,

car and cdr instructions are equivalent to simple
load operations. Complex Lisp primitives such

as member and reverse are microprogrammed.

Furthermore, by virtue of the hashing hardware,
operations on property lists and the oblist which
rely on linear search in most Lisp systems are
performed more efficiently in FLATS.

3.4 Hardware garbage collector

Dynamic storage allocation of variable length
segments of memory in FLATS requires a com-
pactifying garbage collection scheme. The most
time-consuming process in compactifying garbage
collection schemes?0’2! ig pointer adjustment.
FLATS is to incorporate the pointer adjustment
hardware given in Fig. 5.

The pointer ¢ in Q register 1s to be adjusted to
be q' = q - Aq, where Aq is the total number of
inactive cells in the memory block between base
dqo and q. A bit table of 2 width 1s set up in
the memory local to the hardware. The bit table
is marked by a garbage collector: 'l' in the

m -th bit position in columnnw corresponds to

the inactive cell at gp + w2 + m in the main
memory. Therefore Aq is obtained by counting 1l's
bgtween the base qp and q. The column (¢ - qg)/
2 of the offset table contains the cumulative
bit count L. The adjustment can be done in a
main memory cycle when fast memory for the offset
table and the bit table is used.

4. Concluding Remarks

At a users' level, FLATS is a machine both for
numerical processing and for formula manipula-
tion. Instead of devising yet another language,
we provide the facilities in the framework of
existing languages, Fortran and Lisp (REDUCE is
to be used for the user interface language).
New compilers for Fortran and Lisp are under
development, which incorporate the facilities
for associative processing and overflow free
and variable precision arithmetic, at the same

time to accept programs written in Lisp and
Fortran, which have been accumulated Iin libra-
ries of scientific application packages. The

underlying techniques include hardware hashing,
tag mechanism, and hardware list processing
(including hardware garbage collection). Con-
current garbage collection is not considered,
since FLATS is not intended to be used for real
time applications. FLAT is to be used as a
back-end processor to a conventional computer
system; hence the average performance, i.e.
throughput, is a more important factor than

responsiveness. For the same reason, hashing is
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best suited for the associative processing dis-
cussed.

The associative capabilities of FLATS would also
be suited for some operations for data base man-
agement .

Implementation of unified memory management of
secondary and main memories using virtual tapes®?
IS under consideration.

Substantial amount of software for FLATS has
already been written and has been running under
a FLATS simulator. Architectural design of FLATS
Is an outcome of the experiences with the develop
ment of the software system HLISPf''® REDUCE is
now running under HLISP system and are used for
various applications. A version of BFORT men-
tioned before which translates the extended
Fortran into HLISP has already been running.
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examples examples
types types
- - - T -
ATOM
STRing 3STOM HSTR JHTOM, 'TOM', TOM
(three optional
representations)
INT -0137 HINT ~137
+137 137
FLOAT 3.1415 HFLOAT 3.1415
PAIR HPAIR
DLIST (A.B) HDLIST (A;B)
LIST ((A1l) (B 2)) HLIST ( (A1), (B,2) )
— - —
FUNC Fib
r — T e
VECT [356 7] HVEC [3,5,6,7]
- ey -
AMT (A B} HAMT {A,B}
1 T 7
CAT {A:1 B:2} HCAT {A:1,B:2}
e - |
Table 1. Built-in data types in FLATS
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value of hardware L £ {
exponent, P data type meaning ol a mantissa
o { — —
63 address a pointer to
: some data structure
 ——— - . - T - s t—— 1
62 character upto three characters
| S + 4 e ——————— ot ————]
61 ~ =61 "efloat", mantissa of short floating number
exponent of
short floating
number
— - 1 - 1 1
-62 "sint", value of short integer
short integer
= - e - - ~
-63 softwvare use used as a trap code which may
denote software (and microprogram)
identified data types, such as ''big"
integer and 'big" floating numbers
—_— 4 4 —
-64 reserved reserved values denoting nil, empty,
bit patterns deleted etc.
i y o -

Table 2, Hardware tags used in FLATS

KEY VAL

g V-KEY LINK

o ||I|||||I

ROM (M,B,A)

A e
(TOM.ROM,A}
(A,B)
(B;NIL) op
H-
(TOM,ROM) HASH TABLE
| 'A' 'B'.... denote character codes.

(ROM;NIL) m NOte 1- A » B » d in a ce]_l iB Btored-

For illustration one character
2. A+, B+, ROMt ... denote pointers to hashed strings.

3. HSTR and HPAIR are built by a shared linked list.

Fig. 1 Realization of Built-in Data Types
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Fig. 2 Parallel Hashing Hardware
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UTTERANCE AND OBJECTIVE:

ISSUES

Barbara J.
Artificial
SRI
Menlo Park,

Communication in natural language
common-sense reasoning capabilities,
goals, and plans of multiple agents, and the
paper evaluates the capabilities of natural
requirements and identifies crucial areas for

sense reasoning, and their coordination.

1 INTRODUCTION

Two premises, reflected in the title, underlie
the perspective from which | will consider
research in natural language processing in this
paper.' First, progress on building computer
systems that process natural languages in any
meaningful sense (i.e., systems that interact
reasonably with people in natural language)
requires considering language as part of a
larger communicative situation. In this larger
situation, the participants in a conversation
and their states of mind are as important to the
interpretation of an utterance as the linguistic
expressions from which it is formed. A central
concern when language is considered as
communication is its function in building and
using shared models of the world.2

Second, as the phrase "utterance and objective"
suggests, regarding language as communication
requires consideration of what is said
(literally), what is intended, and the

relationship between the two. Recently, the

*

The emphasis in this paper will be on research
concerned with the development of theoretical
models of language use. Because of space
limitations, | will not discuss a second major
direction of current research in natural
language processing, that concerned with the
construction of natural language interfaces.
The major difference between the two kinds of
efforts is that research on interfaces has (to
this point, though it need not) separated
language processing from the rest of the system
whereas one of the major concerns of research in
the more theoretical direction is the
interaction between language-specific and
general knowledge and reasoning in the context
of communication.

2 Indeed, the notion of a shared model is

iInherent Iin the word "communicate," which 1Is
derived from the Latin communicare, "to make
common".
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requires a combination of
the ability to represent and
recognition that utterances are multifaceted.
language processing systems against these

future research

IN NATURAL LANGUAGE COMMUNICATION

Grosz

Intelligence Center
International
California 94025 USA

language-specific and general

reason about the beliefs,

This
N

language processing, common-

emphasis in research in natural language
processing has begun to shift from an analysis
of utterances as isolated linguistic phenomena
to a consideration of how people use utterances
to achieve certain objectives. But, in
considering objectives, it is Iimportant not
ignore the utterances themselves. A
consideration of a speaker's3 underlying goals
and motivations is critical, but so is an
analysis of the particular way in which that
speaker expresses his thoughts. The choice of
expression has implications for such things as
what other entities may be discussed in the
ensuing discourse, what the speaker's underlying
beliefs (including his beliefs about the hearer)
are, and what social relationship the speaker
and hearer have. The reason for conjoining
"utterance" and "objective" in the title of this
paper is to emphasize the importance of
considering both.

to

In the remainder of this paper | want to examine
three consequences of these claims for the sorts

of language processing theories we develop and
the kinds of language processing systems we
build.

| will use "speaker" and "hearer" to refer

respectively to the producer of an utterance and
the interpreter of that utterance. Although the
particular communicative environment constrains
the set of linguistic and nonlinguistic devices
a speaker may use (Rubin, 1977), | will ignore
the differences and concentrate on those
problems that are common across environments.

* The similarity to Word and Object

(Quine, 1960) is not entirely accidental. It is
intended to highlight a major shift in the
context in which questions about language and

meaning should be considered. | believe the
iIssues Quine raised can be addressed effectively
nly in this larger context.



* Language processing requires a
combination of language-specific
mechanisms and general common-sense
reasoning mechanisms* Specifying these
mechanisms and their interactions
constitutes a major research area.

* Because discourse involves multiple
separate agents with differing
conceptions of the world, language
systems must be able to represent the
beliefs and knowledge of multiple
Individual agents. The reasoning
procedures that operate on these
representations must be able to handle
such separate beliefs. Furthermore,
they must be able to operate on
Incomplete and sometimes inconsistent
information.

* Utterances are multifaceted; they must
be viewed as having effects along
multiple dimensions. As a result,
common-sense reasoning (especially
planning) procedures must be able to
handle situations that involve actions
having multiple effects.

2 MONKEYS, BANANAS, AND COMMUNICATION

To illustrate some of the current problems in
natural language processing, | want to look at a
variant of the "monkey and bananas" problem
(McCarthy, 1968), the original version of which
Is substantially as follows: There is a monkey
In a room that also contains a bunch of bananas
hanging from the celling, out of reach of the
monkey. There is also a box in one corner of
the room. The monkey's problem is to figure out
what sequence of actions will get him the
bananas. For a while at least, this problem was
a favorite test case for automatic problem
solvers, and there are several descriptions of
how it can be solved by machine (e.g., see
Nllsson, 1971). The variation | want to discuss
introduces a second monkey, the need for some
communication to take place, and a change of
scene to a tropical forest containing banana
trees. To begin, | want to leave unspecified
the relationship between the two monkeys and
consider a short segment of hypothetical
dialogue:
(1) monkeyl (looking longingly at bananas high
above him): [|'m hungry.
monkey2: There's a stick under the old
rubber tree.

(2)

If monkeyl Interprets monkey2's
Artificial Intelligence (Al) natural language
processing systems would, he might respond with
something like: "|I can't eat a stick" or "l

response as most
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unless monkey2 helped him
out, monkeyl would go hungry. Although there
are a few systems now that might, with suitable
tweaking, be able to get far enough for a
response that indicates they have figured out
that monkey2 intends for the stick to be used
knock down the bananas, there are no programs
yet that would be able to understand most of the
nuances of this response. For example, it
implies not only that monkey2 has a plan for
using the stick, but also that he expects
monkeyl either to have a similar plan or to be
able to figure one out once he has been told
about the stick.

know, so what?" and,

to

If we complicate the scenario just slightly,
then our programs would all be stuck. In
particular, suppose that the tree the stick is
under is not a rubber tree, but rather a
different sort of tree. Monkey2 might still use
the phrase "the rubber tree", either by mistake
or design, if he believes the phrase will
suffice to enable monkeyl to identify the tree
(cf. Donnellan, 1977). No current Al natural
language processing system would be able to
figure out where the stick is. Their responses,
at best, would be Ilike monkeyl saying,
"Whaddayamean? There aren't any rubber trees in
this forest.”" But referring expressions that do
not accurately describe the entities they are
intended to identify are typical of the sort of
thing that occurs all the time in conversations
between humans. The question is what It will
take to get computer systems closer to being
able to handle these sorts of phenomena.

In the remainder of this paper | want to look at
some of the research Issues that need to be
addressed to bring us closer to understanding
why talking monkeys don't go hungry. | believe
many critical language processing Iissues arise
from our limited knowledge of how common-sense

reasoning — which includes deduction, plausible
reasoning, planning, and plan recognition — can
be captured in a computational system.
Consequently, research in natural language

processing and common-sense reasoning must be
tightly coordinated in the next few years. The
root of the problem, | suspect, is the following
discrepancy. Research in problem solving and
deduction has focused almost exclusively on
problems that a single agent could solve alone.
The need for communication arises with those
problems that require the resources of multiple
agents, problems that a single agent has
insufficient power to solve alone. As a result,
language processing is typically an issue in

There I|Is an equal amount of sophisticated
knowledge in monkeyl's using the statement "I am
hungry" to ask for help from monkey2 in solving

his problem.



just those contexts where the aid of another
agent is essential. To obtain that aid, the
first agent must take into account the
knowledge, capabilities, and goals of the
second. In exchange for not needing quite as
much knowledge or capability in the problem
domain, the agent must have additional
communication capabilities. For such problems,
the option of proceeding without considering the
independence of other agents and the need to
communicate with them is not feasible.

3 THE PROCESSES OF INTERPRETATION

To illustrate how language-specific processes
combine with general cognitive processes (i.e.,
common-sense reasoning) in the interpretation of
an utterance, | want to consider the monkeys and
bananas example in more detail. It will be
useful to view natural language interpretation
as being divided into two major interacting
levels. On the first, the linguistic analysis
level, the form of an utterance is analyzed to
determine its context-independent attributes.
On the second, the assimilation level, common-
sense reasoning processes operating in the
context of the current cognitive state of the
hearer —which includes such things as a focus
of attention, a set of goals to be achieved or
maintained and plans for achieving them,
knowledge about the domain of discourse,
knowledge about how language is used, and
beliefs about the cognitive states of other
agents, including other participants in the
current conversation use these attributes to
update the cognitive state and to determine what
response to the utterance is required, if any.

| believe this option is becoming less
feasible as well for problem solving and
deduction components used for other purposes
within Al. Situations in which multiple robots
must cooperate introduce similar complexity even
If the communication itself can be carried out
in a formal language. Sacerdoti (1978)
discusses the usefulness of research in natural
language processing for the construction of
distributed artificial intelligence systems.
The issues being raised in this paper are
central Al issues; they provide evidence of the
interconnectedness of natural language

processing research and other research in Al.

2

the
interpretation.

This separation
kinds of processes involved in
The process of interpretation itself, of course,
entails a great deal of interaction among the
processes in the different levels. There are
major research issues concerned with their
coordination.

Is useful for considering
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let us return to the
interpretation of

To illustrate these levels,
example and consider the

monkey2's response (2), "There's a stick under
the old rubber tree," to monkey 18 indirect
request (1).

3.1. Linquistic Analysis

At this level, the parsing process that assigns
syntactic structure to the utterance also
assigns attributes to the various syntactic
subphrases in the utterance and to the utterance
as a whole. Many of these attributes are of a
semantic nature. For example, the attributes of

the phrase "the old rubber tree"”™ might include
The phrase is of syntactic class NP (noun
phrase)
The phrase is definitely determined

The phrase describes a t such that TREE(t)
and OLD(t), where OLD and TREE are
Q

predicate symbols®
Attributes of utterance (2) as a whole include
its syntactic structure and such properties as:?

The utterance presupposes that there exists
a t such that OLD(t) and TREE(t), and
that the description "OLD(t) & TREE(t)"
should allow t to be determined uniquely
In the current context.

The utterance asserts that there exists an

s such that STICK(s).
The utterance asserts that UNDER(s t).

3.2. Assimilation
As attributes are extracted through the parsing
process at the linguistic analysis level,

common-sense reasoning processes begin to act on
those attributes at the assimilation level. Two
major activities are involved: completing the
literal interpretation of an utterance in
context, and drawing implications from that
interpretation to discover the intended meaning.

How much semantic specificity should be
imposed at the linguistic level is an open
research question. In particular, | have
open the question of what happens with the
modifier "rubber"; suffice it to say, the
qguestion of how it modifies cannot be resolved
solely at the linguistic level. Also, in a more
complete analysis, the predicate OLD would
indicate the set with respect to which age is
evaluated.

left

" What an utterance presupposes and asserts are
not necessarily components of the intended
meaning, but the recognition of presuppositions
and assertions is prerequisite to the
assimilation level of processing.



For the example utterance (2), completing the
literal interpretation in context involves the
identification of the referent of the definite
noun phrase, "the old rubber tree". The first
attribute above indicates that a unique tree
should be easily identified in context- Those
objects currently in monkeyl's focus of
attention are examined (perhaps requiring
sophisticated common-sense reasoning) to
determine whether there is such a tree among
them*™ Assume that none is found® It may be
that only two kinds of trees are present in this
forest, and that one kind, say gumgum trees,
resemble rubber trees, and that of all the trees
near the two monkeys only one is a gumgum tree.
Monekyl may tentatively assume that "rubber
tree” matches "gumgum tree" closely enough to
serve to identify this tree.

The sentence says there's a stick under the
tree, so monkeyl might look under the tree and
discover that, indeed, there is exactly one
stick there. That stick must be the stick whose
existence monkey2 was informing him of. The
literal interpretation of the utterance is seen
to be that the newly found stick is under the
gumgum tree. °

Knowing that the sentence presupposed the
existence of a rubber tree and asserted the
existence of a stick, monkeyl may infer that
monkey2 believes these presuppositions. Thus,
monkeyl comes to believe several new things
about monkey2's beliefs: in particular, that he
believes these two entities exist, and that he
thinks the gumgum tree is a rubber tree, or at
least thinks that this description can be used
to identify the tree. This fact may be
important in further communications. Monkeyl
may also infer that because monkey2 has just
mentioned the stick and the tree, they are in
his focus of attention and that he (monkey2),
too, should pay special attention to these
objects. The stick may be of particular
importance because it was the subject of a
there-insertion sentence (a syntactic position
of prominence) and has been newly introduced
into his focus of attention.

The second major process of assimilation is to
use common-sense reasoning to determine how the
utterance fits into the current set of plans and
goals. In general, this is a highly complex
process. For the particular example of
interpreting utterance (2) in the context

" For more complex utterances, the process of

completing the literal interpretation can
involve determining the scopes of quantifiers
and resolving various types of ambiguities.

'"" Cf. the analysis of a set of therapeutic
interviews in Labov and Fanshel (1977).
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implied by utterance (1), monkeyl must determine
what, "There's a stick under the rubber tree,”
has to do with his problem of getting something
to eat. Briefly, he must see that the sentence
emphasizes the stick and must know (or infer)
that such sticks are often useful tools for
getting things out of trees. He must infer that
raonkey2 intends for him to use this stick in
conjunction with a standard plan for knocking
down things to acquire some bananas and
accomplish his (implicitly stated) goal of not
being hungry.

THE MULTIFACETED NATURE OF UTTERANCES

To determine what objective an utterance is
intended to achieve requires determining where
that utterance fits in the speaker's plans.
That is, just as an agent may perform physical
actions intended to alter the physical state of
his environment, he may perform linguistic
actions (utter sentences) intended to alter the
cognitive state of the hearer. (Whatever effect
an utterance eventually has on the outside
world, its immediate effect is on the hearer's
state.) But because a single utterance may be
used to achieve multiple effects simultaneously,
the problem is more complex than this analogy
(or the preceding example) at first seems to
suggest. ”

The discussion so far has concentrated on a
single dimension of effect: the use of an
utterance to achieve what | will call a domain
goal, that is, to convey information about the
domain of discourse. In this section | want to
discuss two other dimensions along which an
utterance can have effects — the social and the
discourse — and look at some of the problems in
interpretation and generation that arise from
the multifaceted nature of utterances. °

The social dimension includes those aspects of
an utterance that concern the establishment and
maintenance of interpersonal relationships.

This dimension of utterance (1), "I'm hungry,”

12
Physical actions may also have effects along

multiple dimensions although they are not

usually thought of as doing so. For example, a
ballet dancer in leaping (rather than walking
slowly) not only changes position, but also
conveys a particular state of mind for the
character being portrayed and a particular level
of capability.

13

These dimensions parallel the three functions
of language —ideational, interpersonal, and
textual — in Halliday (1970), but the

perspective | take on them iIs closer to that
presented in Levy (1978).



Is easily seen when it is compared with such
choices as
(3) "How can | get some of those

blasted bananas?"
(4) "Can you help me get some bananas down?"
(5) "Get me a banana.”
Each of these achieves the same domain goal,
informing monkey2 of monkeyl's desire to obtain
some bananas, but utterance (1) does not convey
the same familiarity as utterance (3) or the
same level of frustration. Similarly, utterance
(4) makes the same request as utterance (5) but
does so indirectly and, therefore, can be used
with social equals. The social dimension is
present in every discourse'® and prevails in
some (e.g., Hobbs, 1979). It has been largely
ignored in natural language processing research
to date. The assumption has been that some sort
of neutral stance is possible. But not choosing
iIs choosing not to choose (cf. Goffman, 1978),
and, although there are some serious
philosophical issues raised by this dimension of
utterances when considering communication
between people and computers, | do not think we
can continue to ignore it.

The discourse dimension includes those aspects
of an utterance that derive from its

participation in a coherent discourse — how the
utterance relates to the utterances that
preceded it and to what will follow. Typically

the information a speaker wishes to convey
requires several utterances. As a result the
individual utterances must contain information
that provides links to what went before and
properly set the stage for what follows.
Utterances that convey the same propositional
content may differ widely in such things as the
entities they indicate a speaker is focused on
and hence may refer to later. As an extreme
example, note that the propositional content of
"Not every stick isn't under the rubber tree" is
equivalent to that of utterance (2), but because
it does not mention any individual stick, it
does not allow whoever speaks next to make any
reference to the stick that is under the gumgum
tree.’”

'* Pittenger et al. (1960) point out that "no
matter what else human beings may be
communicating about, or may think they are
communicating about, they are always
communicating about themselves, about one
another, and about the immediate context of the
communication.”

15 This example is based on one suggested by
Barbara Partee for the Sloan Workshop at the
University of Massachusetts, December, 1978. A
discussion of her example is included in Grosz
and Hendrix, 1978.

There are two characteristics of these
dimensions and the multifaceted nature of
utterances that introduce complications into
natural language processing. First, as
Halliday (1977) has pointed out, the units in

which the information is conveyed along these

other dimensions of meaning do not follow the
constituent structure of sentences nearly so
nicely as do the units conveying propositional
content. In particular, the social implications
of an utterance are typically reflected in
choices scattered throughout it; for example,
they are reflected in the choice of utterance
type (a request vs. a command) and in the
choice of lexical items.

Second, an utterance may relate to plans and
goals along any number of these dimensions. |t
may be a comment on the preceding utterance
itself, its social implications (or both, as is
usually the case with "I shouldn't have said
that"), or on some part of the domain content of
the utterance. It is not simply a matter of
determining where an utterance fits into a
speaker's plan, but of determining which plan or
plans —domain, social, or communicative — the
utterance fits into. A one dimensional analysis
of an utterance is insufficient to capture the
different effects (cf. Goffman, 1978).

The multifaceted nature of utterances poses
problems for language generation as well. A
speaker typically must coordinate goals along
each of these dimensions. He must design an
utterance that conveys information Ilinking it to
the preceding discourse and maintains the social
relationship he has with the hearer(s) (or

establishes one) as well as conveying domain-
1C

specific information.'® The speaker's task is
further complicated because he has only
incomplete knowledge of the intended hearer's
goals, plans, and beliefs.

5 STATE OF THE ART

| will use our work in natural language
processing at SRI International (Robinson, 1978;
Walker, 1978) as an exemplar for discussing the
current state of research in this area, both
because | am most familiar with it and because |
think the framework it provides is a useful one
for seeing not only where the field stands, but
also where the next several years effort might
best be expended. The system coordinates
multiple sources of language-specific knowledge
and combines them with certain general knowledge
and common-sense reasoning strategies in

' Levy (1978) discusses how the multiple levels
along which a speaker plans are reflected in
what he says and the structure of his discourse.



arriving at a literal interpretation of an
utterance in the context of an ongoing task-
oriented dialogue® A major feature of the
system is the tight coupling of syntactic form
and semantic interpretation®™ In the
interpretation of an utterance, it associates
collections of attributes with each phrase. For
example, noun phrases are annotated with values
for the attribute 'definiteness', a property
that is relevant for drawing inferences about
focusing (Grosz, 1977a, 1977b, 1978) and about
presuppositions of existence and mutual
knowledge (Clark and Marshall, 1978).

iIs performed in multiple stages
under control of an executive and in accordance
with the specifications of a language definition
that coordinates multiple "knowledge sources”
for interpreting each phrase. Two sorts of
processes take part in the linguistic level
analysis™ First, there are processes that
interpret the input "bottom up" (i.e., words ->
phrases -> larger phrases -> sentences). In the
analysis of utterance (2), these processes would
provide attributes specifying that the phrase "a
stick"” is indefinite and in the subject position
of a there-initial sentence and the phrase "the
rubber tree" is definite and presupposes the
existence of a uniquely identifiable entity.
Second, there are processes that refine the
interpretation of a phrase in the context of the
larger phrases that contain it, doing such
things as establishing a relationship between
syntactic units and descriptions of (sets of
propositions about) objects in the domain model.
For example, the structure for "the rubber tree”
would Include predications of existence and
treeness.

Interpretation

of

The assimilation level in the current system
only goes so far as determining a literal
interpretation in context. The major tasks
performed here include delimiting the scope of
guantifiers and associating references to
objects with particular entities Iin the domain
model, taking iInto account the overall dialogue

Several other systems are capable of fairly
sophisticated analysis and processing at the
level of coordinating different kinds of
language-specific capabilities (e.g., Sager and
Grishman, 1975; Landsbergen, 1976; Plath, 1976;
Woods et al., 1976; Bobrow et al., 1977, Reddy
et al. 1977) and of taking into account some of
the ways in which context affects meaning
through the application of limited action

scenarios (Schank et al., 1975; Novak, 1977) or
by considering (either independently or in
conjunction with such scenarios) language-

reference context
1978; Mann et

specific mechanisms that
(Hobbs, 1976; Rieger, 1975; Hayes,
al., 1977; Sidner, 1979).
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and task context®™ In the case of our two
monkeys, the system would determine whether
there was a unique rubber tree in, or near, the
focus of attention of the monkey (more on this
shortly) and then posit, or check, the existence
of a stick under it* The system does make some
inferences based on the information explicitly

contained in an utterance and its literal
interpretation. To see the sorts of inferences
it will make, consider the sequence:

I'm going out to get some bananas.

Where is the stick?
It's under the gumgum tree.

If the system (playing the role of monkey2)
knows of some plan for getting bananas from a
tree that involves the use of a particular
stick, it would be able to make sense of
monkeyl's request, including identifying "the
stick” as the one that is usually used to knock
bananas out of trees. Furthermore, if the plan
iIncluded steps prerequisite to getting a stick
(e.g., getting a knapsack for carrying the
relevant tools and the gathered bananas),
system would infer that they too had been
performed.

(6) monkey 1:

(7) monkey2:

the

Initial progress has been made in overcoming the
limitations of literal interpretation and
including a consideration of a speaker's plans
and goals in the interpretation of an utterance.
Recent research on the role of planning in
language processing Includes that of

Cohen (1978), Wilensky (1978), Carbonell (1979),
and Allen (1979). Cohen (1978) views speech
acts (Searle, 1969) as one kind of goal-oriented
activity and describes a system that uses
mechanisms previously used for planning
nonlingulstic actions to plan individual speech
acts (on the level of requesting and informing)
intended to satisfy some goals involving the
speaker's or hearer's knowledge. In Wilensky's
work on story understanding (see also Schank and
Abelson, 1977), the speaker's overall plans and
goals, some of which are implicit, are inferred
from substeps and intermediate or triggering
states (e.g., inferring from "John was hungry.
He got in his car." that John was going to get

something to eat.) Carbonell (1979) describes a
system constructed to investigate how two agents
with different goals interpret an input
differently; it is particularly concerned with
the effect of conflicting plans on
interpretation. Allen (1979) describes a system
based on a model in which speech acts are

The system actually works on dialogues for
assembling mechanical equipment. The plans it
knows about are partially ordered (and not
linear), and the structures It uses allow for
describing plans at multiple levels of
abstraction.



defined in terms of "the plan the hearer
believes the speaker intended him to recognize'’
and has perhaps gone furthest in determining
mechanisms by which a speaker's goals and plans
can be taken into account in the interpretation
of an utterance”

These efforts have demonstrated the feasibility
of incorporating planning and plan recognition
into the common-sense reasoning component of a
natural language processing system, but their
limitations highlight the need for more robust
capabilities In order to achieve the integration
of language-specific and general common-sense
reasoning capabilities required for fluent
communication in natural language. No system
combines a consideration of multiple agents
having different goals with a consideration of
the problems that arise from multiple agents
having separate beliefs and each having only
incomplete knowledge about the others agent's
plans and goals.'” Furthermore, only simple
sequences of actions have been considered, and
no attempt has been made to treat hypothetical
worlds.

One of the major weaknesses in current Al
systems and theories (and the limitation of
current systems that | find of most concern) is
that they consider utterances as having a single
meaning or effect. Analogously, a critical
omission in work on planning and language is
that it fails to consider the multiple
dimensions on which an utterance can have

effects. If utterances are considered operators
(where "operator" is meant in the general sense
of something that produces an effect), they must

be viewed as conqglomerate operators.

Although it does not yet go beyond literal
interpretation (except by filling in unmentioned
intermediate steps in the task being performed),
the SRI language system does account for two
kinds of effects of an utterance. In addition
to determining the propositional content of an
utterance (and what it literally conveys about
the state of the world), the system determines
whether the utterance indicates that the
speaker's focus of attention has shifted

(Grosz, 1977a,b, 1978; Sidner, 1979).%°

To summarize then,
crucial limitations

one or more of the following
IS evident In every natural

' Moore (1979) discusses problems of reasoning

about knowledge and belief.
9 Grosz and Hendrix (1978) discuss focusing as
one of the elements of cognitive state crucial

to the interpretation of both definite and
indefinite referring expressions, and
Grosz (1978) discusses several open problems in

modeling the focusing process.
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language processing system constructed to date

(although most of these problems have been
addressed to some extent Iin the research
described above and elsewhere):

* Interpretation is literal
propositional content

(only
s determined).

The knowledge and beliefs of all
participants in a discourse are assumed
to be identical.

* The plans and goals of all participants
are considered to be identical.

*  The multifaceted nature of utterances is
not considered.

To move beyond this state, the major problems to
be faced at the level of linguistic analysis
concern determining how different linguistic
constructions are used to convey information
about such things as the speaker's (implicit)

assumptions about the hearer's beliefs, what
entities the speaker is focusing on, and the
speaker's attitude toward the hearer. The
problems to be faced at the assimilation level
are more fundamental. In particular, we need to
determine common-sense reasoning mechanisms that
can derive complex connections between plans and
goals connections that are not explicit
either in the dialogue or in the plans and goals
themselves — and to reason about these
relationships in an environment where the
problem solver's knowledge is necessarily
incomplete. This is not just a matter of
specifying more details of particular
relationships, but of specifying new kinds of
problem solving and reasoning structures and
procedures that operate in the kind of
environment in which natural language
communication usually occurs.

COMMON-SENSE REASONING
PROCESSING

IN NATURAL LANGUAGE

The previous sections of this paper have
suggested several complexities in the common-
sense reasoning needs of natural language
communication. A participant in a communicative
situation typically has incomplete information
about other participants. In particular he
cannot assume that their beliefs, goals, or
plans are identical. Communication is
Inherently interpersonal. Furthermore,
information a speaker conveys typically
a sequence of utterances. As a result,

the
requires

interpretation requires recognition of different
kinds of plans, and generation requires the
ability to coordinate multiple kinds of actions
to satisfy goals along multiple dimensions.
Other complications are introduced by the



interactions among plans of different agents
(Bruce and Newman, 1978; Hobbs and

Robinson (1978) discuss some of the complexity
of the relationship between an utterance and
domain specific plans).

the current deduction and
planning systems in Al are deficient in several
areas critical for natural language processing.
A review of the current state of the art in plan
generation and recognition shows that the most

From this perspective,

advanced systems have one or another (but not
both) of the following capabilities:*' plans for
partially ordered sequences of actions can be
generated detail (Sacerdoti, 1977) and
recognized (Genesereth, 1978; Schmidt and
Sridharan, 1977) at multiple levels of detail in
a restricted subject area. However, these

programs only consider single agents, assume the
system's view of the world is "the correct"” one,
and plan for actions that produce a state change
characterized by a single primary effect.

The most important directions in which these
capabilities must be extended and integrated for
use in the interpretation and generation of
language are the following:

*

It must be possible to plan in a dynamic
environment that includes other active
agents, given incomplete information.

It must be possible to coordinate
different types of actions and plan to
achieve multiple primary effects
simultaneously.

It must be possible to recognize
previously unanticipated plans.

/ CONCLUSIONS

Common-sense reasoning, especially planning, is
a central issue Iin language research, not only
within artificial intelligence, but also in

1978; Morgan 1978),
1974; Labov and

linguistics (e.g., Chafe,
sociolinguistics (e.g., Goffman,
Fanshel, 1977), and philosophy (e.g.,

Kasher, 1978). The literal content of an
utterance must be interpreted within the context
of the beliefs, goals, and plans of the dialogue
participants, so that a hearer can move beyond
literal content to the intentions that lie
behind the utterance. Furthermore, it is
insufficient to consider an utterance as being
addressed to a single purpose. Typically, an

21 Earl Sacerdoti provided me with this
characterization of the current state of affairs

iIn Al research on problem solving as well as
with much useful information about problem
solving issues in general.
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utterance serves multiple purposes: it
highlights certain objects and relationships,
conveys an attitude toward them, and provides
links to previous utterances in addition to
communicating some proposlitional content.

Progress toward understanding the relationship
between utterances and objectives and its effect
on natural language communication will be best
furthered by consideration of the fundamental
linguistic, common-sense reasoning, and planning
processes involved in language use and their
interaction. A merger of research in common-
sense reasoning and language processing is an
important goal both for developing a
computational theory of the communicative use of
language and for constructing computer-based
natural language processing systems. The next
few years of research on language processing
should be concerned to a large extent with
issues that are at least as much issues of
common-sense reasoning (especially planning
issues). While common-sense reasoning research
could continue without any regard for language,

there is some evidence that the perspective of
language processing will provide insights into
fundamental issues in planning that confront Al

more generally.

Finally, | want to emphasize the long-term
nature of the problems that confront natural
language processing research in Al. | believe

we should start by adding communication
capabilities to systems that have solid
capabilities in solving some problem
(constructing such systems first if necessary;

cf. McDermott, 1976). Although it may
initially take longer to create functioning
systems, the systems that result will be useful,
not toys. People will have a reason to

communicate with such systems. Monkey2 can help
monkeyl get something to eat only if he himself
has a realistic conception of the complexities

of monkeyl's world.
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PROBLEM SOLVING TACTICS

Earl D. Sacerdoti
Artificial Intelligence Center
SRl International

Menlo Park,

This paper describes the basic strategies of automatic problem solving,
improving their efficiency.
perspective on and structure to the set of tactics.
and a personal

variety of tactics for

solving research are discussed,
headed: toward greater flexibility of control
execution, and repair.

1. AUTOMATIC PROBLEM SOLVING

For intelligent computers to be able to interact
with the real world, they must be able to
aggregate individual actions into sequences
achieve desired goals. This process is referred
to as automatic problem solving, sometimes more
casually called automatic planning. The
sequences of actions that are generated are

called plans.

to

Early work in automatic problem solving focused
on what Newell [1] has called "weak methods."

While these problem-solving strategies are quite
general and are formally tractable, they are
insufficient in practice for solving problems of
any significant complexity. During the last

decade, a number of techniques have been
developed for improving the efficiency of these
strategies®™ Since these techniques operate
within the context of the general strategies,
they are termed here problem-solving tactics®
The bulk of this paper consists of a description
of the problem-solving strategies and a
catalogue of tactics for improving their
efficiency. This is followed by an attempt to
provide some perspective on and structure to the

set of tactics. Finally, some new directions in

Preparation of this paper was supported by the
Defense Advanced Research Projects Agency under
contract N00039-79-C-0118 with the Naval
Electronic Systems Command. Barbara Grosz,
Peter Hart, Nils Nilsson, and Don Walker
suggested helpful presentation tactics.

perspective
and more
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and then focuses on a
IS made to provide some

some new directions for problem-
Is provided on where the work is
intimate integration of plan generation,

An attempt
Finally,

and a
Is provided on where the
toward greater flexibility of
intimate integration of plan
and repair.

problem-solving research are discussed,
personal perspective
work is headed:
control and more
generation, execution,

Because problem solving involves exploration of
alternative hypothesized sequences of actions, a
symbolic model of the real world, referred to as
a world model, is used to enable simple
simulations of the critical aspects of the
situation to be run as the plans are evolved.
As with all models, the world models used in
problem solving are abstractions or
oversimplifications of the world they model.

1.1. What is Needed to Generate Plans

The general function of an automatic problem
solving system, then, iIs to construct a sequence
of actions that transforms one world model into

another. There are three basic capabilities
that a problem solving system must have. These
are:

a. Management of State Description Models - A

state description model is a specification of
the state of the world at some time. The facts
or relations that are true at any particular
time can be represented as some equivalent of
predicate calculus formulas. (We shall refer,
somewhat loosely, to these facts and relations
as attributes of a state.) The critical aspect
of representation for problem solving is the
need to represent alternative and Jiypothetical
situations, that iIs, to characterize the
aggregate effects of alternative sequences of
actions as the problem solver searches for a
solution.




Three methods have typically been used for
representing these alternatives. One method has
been to include an explicit state specification
in each literal or assertion (as suggested by
McCarthy and Hayes [2] and implemented by Green
[3]). Another alternative is to associate each
literal with an Iimplicit data context that can

be explicitly referenced (as in QA [4]). A
third choice is to have all the literals that
describe the states explicitly tied up in the
control structure of the problem solver (as, for
example, in most problem solvers written in
CONNIVER [5]).

b. Deductive Machinery - A state description
model, then, contains all the information needed

to characterize a particular state of the world.
The information will not all be explicitly
encoded, however, so a deductive engine of some
sort must be provided to allow needed
Information to be extracted from a model. The
deductions are of two types: within a particular
state (this is where traditional, "monotonic"
deduction systems are used), and across states
(that is, reasoning about the effects of prior
actions in a sequence). The deductive machinery
can be viewed as a question-answering system
that allows the problem solver to retrieve
information about a particular state of the
world from the state description model.

C. Action Models - In addition to state
description models and a means of querying them,
a problem solver must have a way of modelling
what changes when an action is applied in an
arbitrary state. Thus, an action is described
by a mapping from one state description to
another. Such a mapping is usually referred
as an operator. The mapping may be specified
either by procedures, as in the problem solvers
based on so-called Al languages [6], or by
declarative data structures. In any case, they
must specify at least the expressions that the
action will make true in the world model and the
expressions that its execution will make untrue
in the world model. Usually, to help guide the
heuristic search for actions that are relevant
to achieve particular goals, one of the
expressions to be made true by each operator is
designated in some way as its "primary effect'.”

to

2% The Basic Control

Generation

Strategy for Plan

The process of generating a plan of action that
achieves a desired goal state from a given
initial state typically involves a extensive
search among alternative sequences® A number of
control strategies for tree search constitute
the basic tools of all problem solving systems.
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Problem solving systems usually work backward
from the goal state to find a sequence of
actions that could lead to it from the initial
state. This procedure generates a tree of
action sequences, with the goal state at the

root, instances of operators defining the
branches, and intermediate states defining the
nodes. A tree search process of some sort is

used to find a path to a node that corresponds
to the initial state. The path from initial
state to goal then defines the plan. Two
particular tree search strategies are discussed
here since they are so commonly used.

The first of these is means-ends analysis, which
was the central search algorithm used by GPS

[7] and STRIPS [8]. This strategy works as
follows. The "difference" between the initial
and goal states is determined, and that instance
of the particular operator that would most
reduce the difference is chosen.

If this operator is applicable in the initial

state, it is applied, creating a new
intermediate state. If the goal is satisfied in
the new state, the search is completed.
Otherwise, the difference between the new state
and the goal state is determined, an operator to
most reduce the new difference is chosen, and
the process continues.

If the chosen operator is not applicable, its
preconditions are established as a new
iIntermediate subgoal. An attempt is made, using
the search strategy recursively, to find a

sequence of operators to achieve the subgoal
state. If this can be done, the chosen operator
Is now applicable and the search proceeds as
described above. If the new subgoal cannot be
achieved, a new instance of an operator to
reduce the difference is chosen and the process
continues as before.

A second
simple problem solvers written

important search strategy, used in
in the so-called

Al languages [6], iIs backtracking, which works
in the following manner. If the goal is
satisfied in the initial state, a trivial
solution has been found. |[If not, an operator
that, if applied, would achieve the goal Is
selected. If it is applicable in the initial
state, It is applied and a solution has been
found. If the chosen operator is not

applicable, operators that would achieve its
preconditions are found, and the search proceeds
as before to find plans to render them
applicable. If the search falls, a different
candidate operator la chosen and the process
repeats.

This strategy follows a
before rejecting it. | t
tree to be represented elegantly;

line of action out fully
thus permits the search
all the active



parts of the search tree can be encoded by the [9] used an explicit ordering of types of

control stack of the search procedure itself, subgoals to guide search.
and all the inactive parts of the search tree Anoth ‘o f ‘h 4 | decisi
need not be encoded at all. Because of the full nother way 1o toctus on ° critica ecisions

first is to abstract the descriptions of the
actions, thereby creating a simpler problem.
This abstracted problem can be solved, producing
a sequence of abstracted actions, and this plan
can then be used as a skeleton, identifying
critical subgoals along the way to a solution,

search at each cycle of the process, it is
critical that the correct operator be chosen
first almost always. Otherwise, the simplicity
of representation offered by this strategy will
be amply repaid by the inefficiency of the

search. . _

around which to construct a fully detailed plan.
As was discussed above, these strategies are This tactic was used in conjunction with an
insufficient in practice for solving problems of early version of GPS by Newell, Shaw, and Simon
any significant complexity. In particular, one [7] to find proofs in symbolic logic (using
of the most costly behaviors of the basic abstracted operators and state descriptions that
problem solving strategies is their inefficiency ignored the connectives and the ordering of
in dealing with goal descriptions that include symbols).
conjunctions- Because there is usually no good

Finally, abstraction can be extended to involve
multiple levels, leading to a hierarchy of
plans, each serving as a skeleton for the
problem solving process at the next level of
detail. The search process at each level of
detail can thus be reduced to a sequence of

reason for the problem solver to prefer to
attack one conjunct before another, an incorrect
ordering will often be chosen. This can lead to
an extensive search for a sequence of actions to
try to achieve subgoals in an unachievable

order. relatively simple subproblems of achieving the

preconditions of the next step in the skeleton

plan from an initial state in which the previous
2. TACTICS FOR EFFICIENT PROBLEM SOLVING step in the skeleton plan has just been

achieved. In this way, rather complex problems

_ _ _ can be reduced to a sequence of much shorter,

2.1. Hierarchical Planning simpler subproblems. Sacerdoti applied this
The general strategies described above apply a tactic to robot navigation tasks [10] and to
uniform procedure to the action descriptions and more complex tasks involving assembly of machine
state descriptions that they are given. Thus, components [11].

they have no inherent ability to distinguish
what is important from what is a detail.

2.2. Hierarchical Plan Repair
However, some aspects of almost any problem are
significantly more important than others. By A side-effect of hierarchical planning is that
employing additional knowledge about the ranking plans can possibly be created that appear to be
iIn importance of aspects of the problem workable at a high level of abstraction but
description, a problem solver can concentrate whose detailed expansions turn out to be
its efforts on the decisions that are critical invalid. The basic idea behind the plan repair
while spending less effort on those that are tactic is to check, as a higher level plan is
relatively wunimportant. being expanded, that all the intended effects of

the sequence of higher-level actions are indeed
being achieved by the collection of subsequences
of lower-level actions. By exploiting the
hierarchical structure of the plan, only a small
number of effects need to be checked for.
Various methods for patching up the failed plan
can then be applied. This tactic was
incorporated in a running system by Sacerdoti
[11] and is very similar to a technique called
"hierarchical debugging" articulated by
Goldstein [12] for a program understanding task.

Information about importance can be used in
several ways. First, the standard strategies
can be modified to deal with the most important
(and most difficult to achieve) subgoals first.
The solution to the most important subgoals
often leaves the world model in a state from
which the less important subgoals are still
achievable (if not, the weaker search strategies
must be employed as a last resort). The less
important subgoals could presumably be solved in
many ways, some of which would be incompatible
with the eventual solution to the important
subgoals. Thus, this approach constrains the 2.3. Bugging
search where the constraints are important, and
avoids overconstraining it by making premature
choices about how to solve less important
aspects of the problem. Siklossy and Dreussi

Rather than attempt to produce perfect plans on
the first attempt, it can often be more
efficient to produce an initial plan that is
approximately correct but contains some "bugs,”
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and subsequently alter the plan to remove the
bugs. By employing additional knowledge about
bug classification and debugging, this approach
allows the decisions made during the problem-
solving process about which action to try next
to be made with less effort, since mistaken
decisions can be subsequently fixed.

Sussman, who first employed this tactic In his
HACKER system [13], called It "problem-solving
by debugging almost-right plans." It |Is often
referred to In the literature as the "debugging
approach” and, Indeed, It has spawned
Interesting research In techniques for debugging
programs or plans developed both by machines and
by people (see, for example, Sussman [14] and
Goldstein and Miller [15]). Debugging, however,
Is an Integral part of the execution component
of any problem solver. What distinguishes this
approach Is a tolerance for Introducing bugs
while generating the plan, and thus it can more
accurately be called the "bugging" approach.

This tactic works by deliberately making
assumptions that oversimplify the problem of
Integrating multiple subplans. These
assumptions may cause the problem solver to
produce an initial plan with bugs in it.
However, if the oversimplifications are designed
properly, then only bugs of a |limited number of
types will be introduced, and relatively simple
mechanisms can be implemented to remedy each
expected type of bug.

2.4% Special-Purpose Subplanners

Once a particular subgoal has been generated, it
may well be the case that it is of a type for
which a special purpose algorithm, a stronger
method than the weak method of the general-
purpose problem solver, can be brought to bear.
For example, In a robot problem, the achievement
of an INROOM goal can be performed by a route-
finding algorithm applied to a connectivity
graph representing the interconnection of rooms,
rather than using more general methods applied
to less direct representations of the rooms in
the environment. Such a special purpose problem
solver was used by Siklossy and Dreussl [9] to

effect dramatic Improvements in the system's
performance.
Wilklns [16] employs special-purpose subplanners

in a chess problem solver for subgoals such as
moving safely to a given square or checking with
a given piece.

Each special-purpose subplanner encodes
additional knowledge about its specialty. To
take advantage of It, the problem solver must
incorporate information about how to recognize
the special situation as well.
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2.5. Constraint Satisfaction

Constraint satisfaction, the derivation of
globally consistent assignments of values to
variables subject to local constraints, is not
usually thought of as a problem solving tactic.
While it cannot be used to generate action
sequences, it can play a very important role
particular subproblems, especially in
determining the binding of variables when there
iIs no clear locally computable reason to prefer
one value over another. From this perspective,
constraint satisfaction can be thought of as a
type of special-purpose subplanner.

Stefik [17] employs constraint satisfaction to
assign values to variables in generating action
sequences for molecular genetics experiments.

In

2.0. Relevant Backtracking

As a correct plan is being searched for, a
problem solver will encounter many choice points
at which there are several alternative steps to
be taken. Most problem solvers employ
sophisticated techniques to try to make the
right choices among the alternative action
sequences initially. Alternatively, a problem
solver could focus on sophisticated post-mortem
analyses of the information gained from early
attempts that fail. By analyzing the reasons
for the failure of a particular sequence of
actions, the problem solver can determine which
action in the sequence should be modified. This
iIs in contrast with the straightforward approach
of backtracking to the most recent choice point
and trying other alternatives there. Fahlman
[18] developed such a system for planning the
construction of complex block structures. His
system associated a "gripe handler” with each
choice point as it was encountered, and
developed a characterization of each failure
when it occurred. When a particular line of
action failed, the gripe handlers would be
invoked in reverse chronological order to see if
they could suggest something specific to do
about the failure. The effect of this mechanism
Is to backtrack not to the most recent choice
point, but to the relevant choice point.

The tactic of relevant backtracking, which is
also referred to in the literature as
dependency-directed or non-chronological
backtracking, was also used in a problem solver
for computer-aided design developed by Latombe

[19].

2.17. Disproving

Problem solvers have traditionally been
automated optimists. They presume that a
solution to each problem or subproblem can be



found if only the right combination of primitive
actions can be put together. Thus, the
impossibility of achieving a given goal or

subgoal state can only be discovered after an
exhaustive search of all the possible
combinations of potentially relevant actions.

It may well be the case that a pessimistic
analysis of a particular goal, developing
knowledge additional to that employed in
building action sequences, would quickly show
the futility of the whole endeavor. This
procedure can be of particular value in
evaluating a set of conjunctive subgoals to
avoid working on any of them when one can be

shown to be impossible. Furthermore, even if a
goal cannot be shown to be impossible, the
additional knowledge might suggest an action

sequence that would achieve the goal. Siklossy

and Roach [20] developed a system that
iIntegrated attempts to achieve goals with
attempts to prove their impossibility.
2-8. Pseudo-Reduction

One of the most costly behaviors of problem
solving systems is their inefficiency in dealing
with goal descriptions that include
conjunctions, as was noted at the end of Section
1. Ordering the conjuncts by importance, as
described in the subsection on hierarchical
planning above, can help, but there may still be
multiple conjuncts of the same importance. One
approach to the problem of selecting an order

for the conjuncts is to ignore ordering them
initially, finding a plan to achieve each
conjunct independently. Thus, the conjunctive

problem is reduced to several simpler,
nonconjunctive problems. Of course, the plans
to solve the reduced problems must then be
iIntegrated, using knowledge about how plan
segments can be intertwined without destroying

their important effects.

This tactic creates plans that are not linear
orderings of actions with respect to time, but
are rather partial orderings. This renders the
cross-state question-answering procedure
described in Section 1.1 more complicated than
for other tactics.

By avoiding premature commitments to particular
orderings of subgoals, this tactic eliminates
much of the backtracking typical of problem
solving systems. Pseudo-reduction was developed
by Sacerdoti [11] and has been applied to robot
problems, assembly of electromechanical
equipment, and project planning [21].
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2.9. Goal

The problem-solving tactics we have discussed so
far all work by modifying, in one way or

Reqgression

another, the sequence of actions being developed
to satisfy the goals. Coal regression modifies
the goals as well. It relies on the fact that,

given a particular goal and a particular action,
it is possible to derive a new goal such that if
the new goal is true before the action is
executed, then the original goal' will be true
after the action is executed. The computation
of the new goal, given the original goal and the
action, is called regressing the goal over the
action.

As an example, let us suppose the overall goal
consists of two conjunctive subgoals. This
tactic first tries to achieve the second goal in

a context in which a sequence of actions has
achieved the first goal (similarly to the
bugging tactic).

If this fails, the second goal is regressed back
across the last action that achieved the first
goal. This process generates a new goal that
describes a state such that if the last action
were executed in it, would lead to a state in

which the original
the regressed goal
destroying the first goal,

second goal were true. i
can be achieved without
the tactic has

succeeded. If not, the regression process
continues.
This tactic requires knowledge of the inverse

effects of each operator. That is, in addition
to knowing how the subsequent application of an
operator changes a world model, the system must
know how the prior application of the operator
affects a goal.

The goal
independently by Waldinger

regression technique was developed

[22] and Warren [23].

3. WHAT'S GOING ON?

We have just finished a brief (heuristically)
guided tour of some of the problem-solving
tactics used recently. They constitute a
diverse bag of tricks for improving the
efficiency of the problem solving process. In
this section we focus on the underlying reasons
why these techniques seem to help.

Problem-solving is often described as state-
space search, or as exploration of a tree of
possible action sequences. We can find some
structure for the bag of tactical tricks by
remembering that search or exploration involves
not only movement to new (conceptual) locations,
but discovery and learning as well.




I1ts work with
Initial state and the

The problem solver begins
information about only the
goal state® It must acquire information about
the intermediate states as it explores them. It
must summarize this Information for efficient
use during the rest of the problem-solving
process, and it must take advantage of all
possible information that can be extracted from
each intermediate state. This can require
considerable computational resources. In the
simplest search strategies, the information may
be simply a number representing the value of the
heuristic evaluation function applied at that
point. It may be much more, however. It may
Include a detailed data base describing the
situation, information about how to deal with
classes of anticipated subsequent errors, and
dependency relationships among the attributes
describing the situation. All this information
Is typically stored in intermediate contexts in
one of the forms discussed in the first section
of this paper.

The information
process can be broken down
relationships among the actions
These are:

learned during the exploration
into four kinds of
in a plan.

order
actions

relationships - the sequencing of the
in the plan;

the links
level and the
the more

hierarchical relationships -
between each action at one
meta-actions above it and
detailed actions below it;

teleological relationships - the purposes
for which each action has been placed in
the plan; and

object relationships - the dependencies
among the objects that are being
manipulated (which correspond to
dependencies among the parameters or
variables in the operators).

These relationships can be explicated and
understood only by carrying out the
instantiation of new points in the search space.
It is thus of high value to a problem solver to
iInstantiate and learn about new intermediate

states. As a simple example of a problem-
solving tactic that displays incremental
learning, consider relevant backtracking. By
following initial paths through the search tree,

the problem solver learns which choice points
are critical. Another clear example is
constraint satisfaction, in which restrictions
on acceptable bindings for variables are
aggregated as search progresses.

The difficulty is that, as with all learning
systems, the acquisition of new information is
expensive. The generation of each new state is
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a major time consumer in many problem solving
systems. Furthermore, the generation of each
Intermediate state represents a commitment to a
particular line of action by the problem solver.
Since problems of any non-toy level of
complexity tend to generate very bushy search
trees, a breadth-first search strategy is
iImpossible to use. Therefore, once a line of
action has begun to be investigated, a problem-
solving system will tend to continue with it.

It is thus of high value to a problem solver,
whenever possible, to avoid generating
iIntermediate states not on the solution path.
Those states that are generated must represent a

good investment for the problem solver.
Thus, there are two opposing ways to improve the
efficiency of a problem solver. The first is to

employ a relatively expensive evaluation
function and to work hard to avoid generating
states not on the eventual solution path. The
second is to use a cheap evaluation function,
explore lots of paths that might not work out,
but to acquire information about the
interrelationships of the actions and objects in

to

the world in the process. This information can
then be used to guide (efficiently) subsequent
search.

Each of the tactics described in the previous
section strikes a particular balance between the
value of instantiating new intermediate states
and the cost of commitment to particular lines
of action. While none of the tactics use one
approach exclusively, each can be categorized by
the one it emphasizes. Furthermore, each can be
distinguished according to one of the four types
of relationships they depend on or exploit.
Table 1 displays a candidate categorization.

None of the tactics fit as neatly into the
classification as the table suggests, because
they typically have been embodied in a complete
problem solving system and so must deal with at
least some aspects of many of the categories.



Approach:

Learn and Choose
Relationship: Summarize New Move
Order pseudo-red.
generation
relevant
backtracking
disproving
Hierarchy plan Epec.-purpose
repair subplanners
Teleology bugging regression
pseudo-red.
critics
Object relevant constraint
backtracking satisfaction
TABLE 1

Classification of Tactics

4. WHAT'S NEXT?

The current state of the art in plan generation
allows for planning in a basically hierarchical
fashion, using a severely limited (and
predetermined) subset of the tactics enumerated
above, by and for a single active agent
satisfying a set of goals completely. The
elimination of these restrictions is a challenge
to workers in Artificial Intelligence. This
section will discuss a number of these
restrictions briefly and suggest, where
possible, lines of research to ease them.

4 1. Integrating the Tactics

To date,
known to this author to
number of the tactics we have described
single system. What follows are some
preliminary thoughts on how such an integration
might be achieved.

there has been no successful attempt
integrate a significant
into a

the technique of hierarchical
independently of any of

First of all,
planning can be applied
the others. That is, all of the other
techniques can be applied at each level of
detail within the hierarchy. A number of
interesting problems (analogous to that faced by
the "hierarchical plan repair'' tactic) would
have to be faced in integrating their
application across levels of the hierarchy.
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Approaches for dealing with each of the types of
relationships shown in Table 1 can probably be
selected without major impact on the approaches
selected for the other relationships. Thus, we
can use Table 1 as a menu of possible tactics
from which various collections can be
constructed that make sense together in a
problem solver.

that emphasize the clever selection of
new paths to explore in the search space might
be difficult to integrate with tactics that
emphasize the learning and summarization of
information derived from the portion of the
search space already explored. However, the
major payoff in integrating tactics might come
from exactly this kind of combination.
Developing a problem solver that uses both kinds
of technique when appropriate will probably
require the use of novel control strategies.
The interesting new results from such an
endeavor will derive from efforts to employ
information developed by one tactic in the
application of other tactics.

Tactics

4.2 . Flexible Control Structure

While the tactic of hierarchical planning speeds
up the problem solving process greatly, it
requires that a plan be fully developed to the
finest detail before it is executed. In real-
world environments where unexpected events occur
frequently and the detailed outcome of
particular actions may vary, creation of a
complete plan before execution is not
appropriate. Rather, the plan should be roughed
out and its critical segments created in detail.
The critical segments will certainly include
those that must be executed first, but also may
include other aspects of the plan at conceptual
"choke points" where the details of a subplan
may affect grosser aspects of other parts of the
plan.

Hayes-Roth et al. [24] are developing a program
based on a model of problem solving that would
produce the kind of non-top-down behavior
suggested here. Their model is based on a
Hearsay-Il architecture [25], but could probably
be implemented using any methodology that
allowed for explicit analysis of each of the
four kinds of dependencies described in Section
|1l above. Stefik [17] has implemented a system
that, at least Iin principle, has the power to
produce this kind of behavior. His system
incorporates a flexible means of determining
which planning decision to make next. His
decisions are local ones; should global ones be
incorporated as well, we might see a means of
determining dynamically which tactic to employ
in a given situation®



Execution

4. 3. Planning for Parallel

Problem solvers to date have been written with
the idea that the plan is to be generated by a
single processor and will ultimately be executed
one step at a time. The development of
cooperating problem solvers and algorithms for
execution by multiple effectors will force a
closer look at the structure of plans and the
nature of the interactions between actions*

A solid start has been made in this area.

FIkes, Hart, and Nllsson [26] proposed an
algorithm for partitioning a plan among multiple
effectors- Smith [27] developed a problem
solver that distributes both the plan generation
and execution tasks. The pseudo-reduction
tactic creates plans that are partially ordered
with respect to time, and are therefore amenable
both to planning in parallel by multiple problem
solvers and to execution in parallel by multiple
effectors. Corkill [28] is adapting the NOAH
[11] pseudo-reduction problem solver to use
multiple processors in plan generation, and we
at SRI are adapting it to plan for the use of
multiple effectors.

4.4, Partial Goal Fulfillment

Problem solvers to date have been designed to
fully satisfy their goals. As the problems we
work with become more complex, and as we attempt

to integrate problem solvers with execution
routines to control real-world behavior, full
goal satisfaction will be impossible. In
particular, a system that deals with the real
world may need to execute a partially
satisfactory plan and see how the world reacts

to it before being able to complete the next
increment of planning. Thus, we must be able to
plan for the partial satisfaction of a set of
goals. This implies that a means must be found
of prioritizing the goals and of recognizing
when an adequate increment in the planning
process has been achieved.

5. A PERSPECTIVE

The problems we have posed have a common theme
to their solution: increased flexibility in the
planning process. The metaphor of problem

solving as exploration for information that was

presented above suggests that the result of
pursuing the problem solving process can lead to
surprises as great as those encountered in plan

execution. The plan execution components of
problem solving systems have been forced to be
quite flexible because of the surprises from the
real world that they had to deal with.

Therefore, especially as the tactics used in
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exploring for plans become more daring, the

lessons that can be learned from plan execution
can be extremely valuable for plan generation.

This view suggests a direction for future work
In problem solving: it will become more Ilike
incremental plan repair. The means of storing
and querying state description models will have
to allow for efficient updating when the orders
of actions are altered and when new actions are
iInserted in mid-plan. Planning at higher levels
of abstraction will appear very similar to
planning for information acquisition during plan
execution.

research strategy for
In problem

Therefore, the best
advancing the state of the art
solving might well be to focus on integrated
systems for plan generation, execution, and
repair. By developing catalogues of plan
execution tactics and plan repair tactics to
accompany this catalogue of plan generation
tactics, we can begin to deal with problems
drawn from rich, interactive environments that
have thus far been beyond us.
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Light of Al Models of Scientific Discovery
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Abstract and Introduction

Some recent artificial intelligence programs whose task is to simulate the processes of scientific discovery can

be taken as models of the history and processes of discovery within the Al discipline Itself.

Consistently with

these models, Al research relies basically on the methods of heuristic best-first search. Because of Its necessarlly
vague end open goals, it works forward inductively (rather than backward In menea-ends fashion), guided by a
crude evaluation function that tests running programs to identify promising directions.

Al reseerch Is empirical and pragmatic, typically working with examples rather than theorems, and exemplfyin

the heuristic of learning by doing.

In Its essential reliance on weak methods and experiment Insteed Of proof, it is

edepted to the exploration of poorly structured task domains, showing considerable contrest In the respect to
operetione reseerch or numerical analysis, which thrive best In domains possessing strong formal structure.

At scientific meetings it is customary to schedule, Iin
addition to papers reporting specific pieces of research,
"addresses, "keynote speeches,"” and the like, which may
be described .as meta-papers. The task of meta-papers
la not to report research but to Interpret the past and to
peer into the future of the discipline. This is such a
meta-paper. Presumably you expect me to say where
artificial intelligence has been and where it is going.

Clearly, this is not a task for human intelligence.
Human beings are notoriously incapable of reviewing
history — especially history in which they have
participated — without rationalizing outrageously to make
the pest conform to their picture of the present. And
human forecests of the future almost always reveal much
more ebout the forecasters' hopes, fears, desires and
dreads than they do about the shape of the world to
come.

Early in the history of Al, in 1957, Allen Newell and 1
made some predictions that became rather notorious
(Simon & Newell, 1958). Skeptics and opponents of Al
used them as evidence of the recklessness and
irresponsibility of the advocates of Al. (Optimistic
forecasts seem to attract such charges much more often
than do doomsday forecasts.)

Of course our forecasts were neither reckless nor
irresponsible. As we said at the time, they represented
our attempt to define in concrete terms the nature of the

revolution in human affairs that was going to be
produced by computers in general and artificial
Intelligence In particular. As scientists privileged to

withess the early stages of a momentous development,
we felt a responsibility to interpret that development to
leymen, and the predictions were our interpretation. Nor
was our forecasting seriously inaccurate, if one allows a
time-stretch factor of two or three — a not unreasonable
mergin of inaccuracy in such crystal-ball ventures.

| cite this little piece of history not to defend my
record as either a seer or a historian, but as empirical
evidence for my doubts, expressed earlier, that either
foresight or hindsight are fit tasks for human intelligence.
Such doubts undermine the very foundations of
meta-pepers, including this one.
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If human Intelligence Is unequal to the needs of history

and prophecy, perhaps we should call on artificial
intelligence. Perhaps we should ask what Al has to say
about the processes of discovery. After all, we do have,
todey, a number of artificial Intelligence programs that
are capable of making discoveries of one kind or another
— | have in mind particularly Doug Lenat's AM program,
and Pat Langley's BACON. Perhaps these programs can
tell us more about the research process than human
beings can.

An Al program that makes genuine discoveries, or one
that solves difficult problems, provides us with a theory
of the discovery process, Indeed, a theory in the most
concrete and explicit form that is conceivable. Since
these programs reveal to us some of the essential
requisites and structure of the discovery process, we can
use them to illuminate the history of discovery in the
domain of artificial intelligence itself, and to provide soma
insight into the ways In which we can best proceed In
future research and development amed at new
discoveries in that field.

This i1s the path | propose to pursue Iin this paper.
First, | will summarize what seem to me some of the
salient characteristics of successful artificial intelligence
problem-solving systems, especially those whose basic
task is to make discoveries. Next, | will ask whether this
list of program characteristics suggests why the process
of discovery in the Al field itself has taken the particular
course that it has. Finally, | will turn to the future, and
ask what lessons we might learn from this experience In
our continuing efforts to extend the boundaries of Al,
particularly in the directions of greater capabilities for
discovery and for solving lll-structured problems. If this
route seems somewhat circular — Al illuminating itself --
1 remind you that circles may be either vicious or
virtuous, and | will argue that this is one of the virtuous
kKind.

| will not try to cover every aspect of Al, and w
undoubtedly overemphasize problem-solving and heuristic
search at the expense of such areas as visual pattern
recognition. This lapse will be the less serious to the
extent that the techniques of heuristic search are today
Invading the domain of pattern recognition, bringing



about a greater degree of unity in outlook throughout the
whole field of artificial Intelligence. So | will take, as
Allen Newell and | did In our Turing Lecture, heuristic
search as the central paradigm for artificial intelligence
(Newell & Simon, 1976).

1. Al Programs at Theories of Discovery

By a discovery program | mean a computer program
whose output is not inferable in any obvious way from its
Input. The phrase, "in any obvious way," is essential to
the definition, since we know that a program does exactly
what we program It to do — which is usually not at all
the same es doing what we supposed we had
programmed it to do.

2* The Nature of Discovery

Novelty, In computers as In human beings, lies in the
eye of the beholder. The result Is novel if it was not
expected from the outset. But even this definition is
ambiguous. As the numerous documented cases of
Independent Invention attest, a discovery may be novel
to the discoverer but not to the whole society, for others
may already have found it. However, to produce a
novelty a second time, without knowledge that it has
already been discovered by others, presumably requires
the same kinds of cognitive processes as were required
to produce It the first time. Anything we can learn by
examining the program of the original discoverer we
should be able \o learn also by examining the program of
the rein venter.’

It is probably true today that within any one hour
period some computer program somewhere in the world
has followed a path rsevnr before traversed, to produce a
novel successful result. This must occur for example,
more than once Iin almost every game played by a
hobbyist's minicomputer chess program, since chess
games rarely fully repeat others that have been played
In the world. However, we generally do not $pply the
term "discovery" to every novelty of this kind, however
rational or adaptive the output may be. We require, In
addition, that the novelty be in some sense remarkable or
socially valuable. In particular, and borrowing language
from the patent law, to be an invention, a novelty must
not be "obvious to a person skilled in the art." While a
minicomputer playing Class D chess discovers many novel
solutions to its problems, these solutions would

resumably be discovered easily by strong players,
Rence would not qualify as inventions in the legal sense.

Even today, after a quarter century of Al efforts, it is
hard to point to fully convincing examples of discoveries
by artificial intelligence programs that satisfy this stricter
definition, of being neither rediscoveries nor obvious to
one skilled In the art. |If pressed on this point, | might
want to defend certain products of chess programs,
programs for musical composition and visual design, and
theorem-proving programs as meeting the stricter
requirements of invention, but such a defense would take

*Thia claim raqutras torn* qualifications. TKt rtinvintor may poitttt
knowtadfe — not tha mvantion itastf, but knowttdft ramvint to it - that
waa not availabla to tha ordinal invantor, but which mahoe tha Job ttsiar
¢ha Mcond time. Latar, | wiM hava mora to sty on thit point mm it *ppfct
apactf ieaHy to At
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me away from my main concern here.

| will draw my examples of discovery from computer
programs that have mainly rediscovered what was
already known, but whose discoveries are hardly trivial,
and would indeed have been adjudged important if they
had been genuinely new. | have in mind such examples
es the discovery by Lenat's AM program of the concept
of prime number and it* conjecturing of the fundamental
theorem of arithmetic — that e”ery positive integer can
be represented uniquely as a product of powers of
primes (Lenat, 1977). Examples of a slightly different
kind are BACONS induction from empirical data of
Kepler's Third Law, Ohm's Law, and the Laws of Boyle
and Charles (Langley, forthcoming).

Before we take the programs that found these
concepts and laws as exhibiting the essential processes
for discovery, we must satisfy ourselves on one point:
that the human programmers did not, in some explicit or
implicit way, embed the results at the outset in the
programs and their inputs. Since we have already agreed
that the outputs of programs are determined by the
programs (and data), what can we mean by this
requirement? Simply that the derivation of the outputs
from program and data be sufficiently non-obvious. This
s, of course, the same criterion we apply to a
mathematical theorem to determine whether it is "deep”;
and it is the same as the legal requirement for invention,
quoted above.

This iIs not to say that it is a precise criterion, statable
in a formal way. The only way | know to decide whether
AM or BACON, or any other program purporting to have
powers of discovery (but exhibiting those powers
through rediscovery) genuinely  possesses  such
capabilities is to search the code carefully for hideaways
where the conclusions may be concealed in the premises.
The severity of the test will depend on how thoroughly
the search is made and how strict a criterion of
obviousness is applied. Since | know of no way at the
present time to quantify either of these two dimensions
of the test, we must still depend (as we do in evaluating
the merit of scientific discoveries) on informal judgement.

From close familiarity with the AM and BACON
programs, | am satisfied that these two programs pass
any reasonable tests of this kind. Let me, then, comment
on the structure of the programs — on the sources of
their powers of discovery. For the sake of those of you
who 9re not acquainted with AM or BACON, | will first
state briefly what each program does. As already noted,
a fuller description of AM, by Doug Lenat, will be found in
the Proceedings of the Fifth UCAIU977), and of BACON,
by Pat Langley, in the Proceedings of this conference.

Lenat's AM Program AM is a system that discovers new
concepts and that conjectures new relations among them.
Its input consists of an initial stock of concepts (in one
application, the basic notions of set theory), goals and
criteria (the goal of discovering new concepts and
possible relations among concepts, and criteria for
evaluating the worth or interest of concepts), and
heuristics for searching for new concepts. Among the
criteria for judging if a concept is interesting is how
closely it is related to other interesting concepts, and
whether examples of it can be constructed — not too
easily, but with not too much difficulty. The search
heuristics include the aovice to construct examples, to




pay particular attention to borderline examples, to
particularize when examples are found too easily, to
generalize when they are hard to find This is the Kind
of initial information available to AM — initial concepts,
goals and criteria, and search heuristics.

The control structure of AM guides it in a best-first
search} the criteria of concept worth determine which of
the concepts already attained should be the starting
point for the next quantum of search. On its most
celebrated run, starting with the concepts of set theory,
AM discovered — among other things — the integers, the
arithmetic operations of addition, subtraction,
multiplication and division, the concept of prime number,
and, as | mentioned earlier, the prime number
representation theorem. When it began concerning itself
with numbers possessing maximal (instead of minimal)
numbers of prime factors, Lenat thought it had entered
on truly new ground, only to find that this territory had
earlier been explored by the self-taught Indian
mathematician, Srinivasa Ramanujan. Therefore, AM must
be evaluated as a rediscoverer, rather than a discoverer
of new mathematical truths.

Lanelev's BACON Program BACON is a program that
induces general laws from empirical data. Given sets of
observations on two or more variables, BACON searches
for functional relations among the variables. Again, it
carries out a form of best-first search, in which a
criterion of "simple things before complex" guides what
to try next.

BACON'S search is highly selective; it does not try all
possibilities. It arranges the observations monotonically
according to the values of one of the variables. Then it
determines whether the values of some other variables
follow the same (or the inverse) ordering. Picking one of
these other variables, it searches for an invariant by
considering the ratio (resp., product) of this variable with
the original one. If the ratio (product) is not constant, it
IS Introduced as a new variable, and the process
continues. Thus, the newly defined variables in BACON
correspond to the new concepts in AM, and the process
Is driven by a search for invariants.

It is easy to see how BACON, discovering that the
product of electrical current by resistance in an electrical
circuit was constant, would be led to Ohm's Law. The
case of Kepler's Third Law requires BACON to generate,
successively, ratios of powers of the radii of the planets
orbits to powers of their periods of revolution, arriving
at the invariant, D°/P?, after a search of a small number
of possibilities.

| have mentioned only a few of the salient features of
BACON. The system has at least crude means for
ignoring noise as data, and a number of other interesting
features, but | will leave their fuller description to the
program's author. What is interesting for our purposes is
that a program, equipped and organized as | have
described, detects regularities iIn data sufficiently
perceptively to rediscover important scientific laws.

AM and BACON wuse similar schemes of memory
organization. The ability to apply the same basic
processes to given information and to newly generated
concepts or variables, respectively, hence to operate
recursively, Is guaranteed by using a homogeneous
format for the storage of all data. Though the details of
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the data structures are different for the two programs,
both use schemes — structures of properly lists -- to
describe the objects with which they deal or which they
generate. The main element of rigidity in their memory
organizations is that the specific properties that may
occur in these schemes — the "slots" — are specified In
advance and known to the programs.

Discovery Mechanisms The theory of discovery that
emerges from an examination of how these programs
work contains little that should surprise us — unless we
have been seduced by the often-repeated myth that
discovery processes, being "creative," somehow stand
apart from the other actions of the human mind. In AM
and BACON we see discoveries being produced by
precisely the same kinds of symbolic processes that
account for the efficacy of other Al problem-solving
programs: theorem provers, chess players, puzzle
solvers, diagnosis systems. A space of possible concepts
and relations (AM), or of possible invariants (BACON) is
searched in a highly selective, best-first manner. The
search mainly works forward inductively from the given
concepts or data.

The discovery programs are distinguished from most
other problem-solving systems in the vagueness" of the
tasks presented to them and of the heuristic criteria that
guide the search and account for its selectivity. Because
the goals are very general ("find an interesting concept
or relations, "find an invariant"), the use of means-ends
analysis to work backward from a desired result is not
very common. By and large, the programs work forward
iInductively from the givens of the problem and from the
new concepts and variables generated from these givens.

Both programs work at a very concrete level. AM
makes a major use of examples, which it is capable of
generating, in searching for new concepts. BACON works
with numerical data. If we observed human scientists
working in the manner of these programs, we would
regard them as very pragmatic. We are reminded of
Faraday's notebooks, in which he recorded, day after day,
the experiments that were suggested to a curious mind
by the findings of the previous day's experiment. Or, we
think of Mendeleev arranging and rearranging his lists of
the elements until their periodic structure begins to
emerge from his worksheets.

Both programs discover, they do not prove. Their task
Is to find regularity and pattern in nature, not to
demonstrate the necessity of that pattern. Although their
heuristics appear very general and weak — they do not
rely et all on semantic information about the task domain
that is being explored — they accomplish the search
tasks with a remarkably small amount of trial and error.
In the best tradition of heuristic schemes, they operate
without any guarantees that they will succeed, but they
do succeed in finding many interesting results. We would
not even know how to define completeness for programs
given these kinds of ill-defined tasks.

Because the tasks addresssed by these systems are
poorly defined, we do not have good measures of how
powerful they are. Of course, we can make our personal
evaluations of the quality of their discoveries — of how
Impressed we are that AM finds the prime number
factorization theorem, or that BACON readily Induces
Ohm's Law from the data. But we do not have the
precision of comparison with human performance that a



chess program gives us, or a program for medical
diagnosis. The difficulty of evaluating them s
compounded by the absence of a yardstick for measuring
the knowledge with which they are endowed at the
outset, or that is embedded in the program structures.
We do not know whether BACON had the same starting
point as Ohm, or whether one of them was faced with an
essentially simpler problem of induction than the other.
Of course the same uncertainties surround all of our
attempts to evaluate human discovery also. AM and
BACON pose no new methodological puzzles in this
respect.

How does the behavior of these programs compare
with the behavior of the human scientists who have
labored in the vineyards of artificial intelligence during
the past 25 years? Do AM and BACON provide a true, if
rough and approximate, description of that discovery
effort? And what of the future of Al? Can these
discovery programs help us in either prediction or
strategy? Let me turn first to the history.

3. The Discovery Process in Al

Artificial intelligence has sometimes been criticized as
being atheoretical, and consequently as having no solid
substance. Of course, the premise might be true but the
consequent false, unless we believe that all truth takes
the form of rigorously proved theorems.  Artificial
intelligence has certainly been short of theorems, and in
a field as densely populated with mathematicians and
former mathematicians as Is computer science, its
nakedness in this respect has not gone unnoticed.

It may be objected that 1 am neglecting the A*
algorithm, or the various interesting properties of
Alpha-Beta search, or even the theorems that Kadane and
| have proved about optimal evaluation functions for
best-first all-or-none search (Simon & Kadance, 1975).
But these isolated examples, even if we add to them all
the others known to us, do not constitute a theory of
artificial intelligence. At best, they provide us with some
iIslands of theory, separated by wide expanses of an
atheoretical ocean. Moreoever, the heuristics of
best-first search implied by these examples were known
empirically and used in running Al programs for many
years before the mathematics was developed (Newell A
Simon, 1956).".

Al as Empirical Inquiry | am afraid that we must resign
ourselves to the fact (or celebrate it, depending on our
taste in science) that artificial intelligence has not been a
branch of mathematics, but rather a field of inductive,
empirical inquiry. The main strategy of investigation has
been to propose tasks requiring intelligence for their
performance, to write programs for handling those tasks,
and to test the efficacy and efficiency of the programs
by giving them a sample of tasks drawn from the domain
In question. Nearly everything we have learned about
artificial intelligence over the past 25 years (and much of
what we have learned about human intelligence as well),
has been found by following this experimental strategy.
And the body of knowledge that exists in Al today Is

The logic Theory Machine. In 1056,already Incoporated best first
heuristic search, white the Alpha-Bate houristic it to be found In cKrat
programs at early * 1956.
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better described as a store of experimental data and
Inferences drawn from them than as a collection of
mathematical truths.

But the process | am describing corresponds closely to
the kind of process that is carried out by AM and BACON.
We have seen that both programs are inductive and
experimental even if the product of the former's
efforts are mathematical constructs and conjectures, and

~

of the letter's, postulated functional relations among
numerical variables. Neither AM nor BACON proves
anything. If they produce conviction, it is the conviction

of the empirical scientist, relying on some postulate of
the uniformity of nature, rather than the conviction of the
mathematician, relying on the certainty of the laws of
logic.

Inferring Principles From Programs The
problem-solving tasks that Al research has addressed
during the past 25 years, like the tasks addressed by AM
and BACON, seem largely fortuitous targets of
opportunity: theorem- proving in logic and group theory,
the Eights Puzzle and Missionaries & Cannibals, chess,
Euclidean geometry, medical diagnosis, mass spectrogram
analysis, speech recognition, parsing natural language, to
mention a few. An assiduous historian could no doubt
track down the reasons why each of these domains was
attempted, but those reasons would not add up to a
grand strategy for artificial intelligence. Probably the
choice was neither much more nor much less considered
than the choice of sweet peas and fruit flies as favored
organisms for genetic research.

The true comparison is between these tasks, on the
one hand, and the examples generated by AM or the data
sets of BACON, on the other. The central inductive
problem for Al has been to generalize from the
performance of programs dedicated to individual tasks
some principles (empirical principles, not necessarily
theorems) about the mechansims required for intelligent
problem-solving behavior. How successfully this problem
has- been solved can be judged by assessing how far new
Al programs make use of the heuristics and structural
principles of the programs already in existence, and by
examining the extent to which Al textbooks are organized
In terms of general principles.

On both scores there is evidence of steady progress in
Al. In the first decade or two, one can find a number of
reinventions of general principles by investigators who
were exploring different task domains (or even,
occasionally, the same task domain). For example,
best-first search apparently appeared intially, as already
noted, as a component of one version of The Logic
Theory Machine, disappeared in early versions of GPS,
which tended to be oriented towared depth-first search,
and reappeared Iin the MATER chess combinations
program (Baylor A Simon, 1966). As another example,
schemes appear in programs as early as 1956, but were
subsequently reinvented and rechristened "templates" or
-frames" (Minsky, 1975; and Simon, 1972). During the
past five or ten years, however, the main structural
components of Al programs have been identified, and a
reasonably consistent vocabulary adopted for referring
to them.

This gradual progress toward awareness of general
principles Is reflected by the textbooks in the field.
Early textbooks were little more than collections of



examples of more or loss successful problem-solving
programs. Beginning with Nilsson's book, Problem-solving
Methods In Artificial Intelligence (Nilsson, 1971), some
genera) threads of organization began to appear, and
specific programs were not merely described, but were
analysed for their contributions to these threads. With
all this progress, the contemporary books still reflect the
pragmatic and empirical foundations of the field, and
resemble textbooks in geology more than they resemble

treatises in analytical mechanics.

Departures from the Discovery Model There is one
respect in which the history of At research departs
significantly from the trace of a computer discovery
programs for in the Al world, many lines of inquiry can be
pursued simultaneously — provided that the discipline is
sufficiently well populated by researchers, and that the
researchers are not too much driven by fads. Hence,
when we try to interpret the annals as exemplifying
best-first search, we must use that term loosely. To be
sure, there was a period of several years during which
attempts at theorem- proving nearly dominated Al
research, and a more recent period when much of the
iInquiry was focused on problem-solving N
knowledge-rich domains. When a topic like one of these
seems to be progressing rapidly, it attratts much of the
field's research effort, as would be true of a best-first
search system. But other lines of investigation are never
wholly dormant.

What has happened when the Al research strategy has
departed from the discovery model? The most instructive
examples are the cases where pragmatism was sacrificed
to the demand for more theory and formal development.
One such case is theorem-proving, where mathematical
tastes have exercised greater influence than in most
other Al task domains.

From the time of Hao Wang's early and successful
program for proving theorems in the propositional
calculus (Wang, 1960), most theorem-proving efforts have
placed great emphasis on the completeness of their
programs and upon employing elegant proof methods
(e.g., natural deduction and resolution) from symbolic
logic.  Since completeness Is most easily proved for
breadth-first programs that do not use pragmatically
constructed selective heuristics, the mainstream of
research eschewed best-first search and heuristics that
lacked guarantees of completeness.

When heuristics could be used that did not threaten
completeness (e.g., set of support), they were adopted
readily, but heuristics possessing this guarantee were not
in sufficiently long supply to prevent the exponential
explosion of search trees. The net result has been a
general disillusionment  with  the progress  of
theorem-proving research, and a diversion of effort to
other task domains within Al. Some exceptions can be
found, of course. For example, in the impressive work of
Bledsoe and his associates, we see exhibited a much more
pragmatic attitude towards heuristics than has been

characteristic of theorem-proving research in general
(Bledsoe, 1977).

Al as | Residual Domain Some years ago, Allen Newell
described artificial intelligence as the domain of weak
methods, a description that still seems to hold (Newell,
1969). thls Is not because anyone prefers weak methods
to strong. No one would solve a problem by heuristic

1090

search if he thought that the simplex algorithm of linear
programming would do the job. But strong methods
apply only in domains that have sufficiently rich and
smooth structure to support them. The simplex method
works only in a problem space that is convex, bounded
by linear inequalities, and with a linear criterion function
to be maximized. The method exploits the mathematical
structure of the space to home in on solutions in a
relatively direct and straightforward fashion.

AM, and to a lesser extent BACON, are designed to
work in spaces that have little regular structure, or which
have structure that is intiailly unknown to the program.
They use the weak methods of heuristic search for the
same reason that artificial intelligence has used those
methods — because not enough was known, In advance,
of the shape of the problem space for stronger methods
to be used.

Similarly, attempts to derive measures of computational
complexity for typical Al domains have not yet yielded
much of a mathematical harvest. Proofs about the
dependence of amount of computation, in the worst or
average cases, upon problem size depend on knowledge
of structural features of the problem domain, and where
such structural features are unknown or absent it
becomes difficult to obtain strong mathematical results.

Necessity should not be redefined as a virtue. Yet, it
makes some sense to define artificial intelligence as a
residual domain -- the domain Iin which it has not yet
been possible to substitute powerful special-purpose
techniques for weak methods. At any time that such
techniques are discovered for a particular subset of
problems, those problems are removed from the
jurisdiction of Al to that of operations research or
numerical analysis. But human intelligence, applied, for
instance to the discovery of new knowledge, is not
limited to working in orderly domains that have strong
structure, and it is the task of Al to show how
intelligence works, and even to complement its working,
In less well structured domains.

4. From Past to Future

If we take AM and BACON as our models of the
discovery process, then we should despair of making
exact forecasts of where artificial intelligence research is
likely to go in the next few years. For the discovery
process illustrated by those programs is myopic, its
best-first search responding to intimations of
opportunity. Consequently, targets will continue to shift,
as they have shifted in the past, to those task domains
that exhibit from time to time, most promise of movement.

Allocation of Effort One important difference has
already been noted between a discovery process
programmed for a serial digital computer and the social
discovery process of the Al community. That community
Is a parallel, rather than a serial, machine. With the
increase in manpower that has been attracted to the field
in the past five years, the prospects are now brighter
than they were earlier for maintaining sustained research
activity in a number of Al domains at the same time. At
the present time, for example, a more or less continuous
effort of several research groups is being devoted to
chess programs, to natural language understanding, to
visual pattern recognition, to medical diagnosis, and to
various kinds of information retrieval tasks.




The fact that a computing system has modest parallel
capacity does not, however, invalidate the main features
of the best-first search model. The parallel capacity Is
still highly limited, and does not grow exponentailly (at
least not for long), as it would have to in order to avoid
decisions about what part of the tree to search next.
The effort allocation problem for a parallel, but not
exponentially growing, system is merely a little less
poignant than the problem for a strictly serial system. At
any given moment, several branches that are most
promising for exploration have to be chosen, instead of a
single branch. Hence, with limits of both manpower and
funding in Al, increased activity in some directions means
decreased activity in others.

For example, research on speech recognition appears
to have receded again to a relatively low level of activity
with the termination of the special ARPA funding, as has
Al research on robotry. (I will have a bit more to say
about robotry research later, but will simply observe
now that the current boom in industrial robotry is only
tenuously connected with the main stream of Al research,
and makes only limited use of Al methods.) Automatic
programming has never reached the level of attention
that Its potential importance and centrality to Al would
seem to justify. Theorem-  proving and
problem-solving In general -~ appear to be attracting
relatively little effort currently.

Judged in terms of the contents of the Proceedings of
UCAIS (I don't have the corresponding numbers for the
current conference), natural language is attracting the
most attention in Al research, followed closely by vision
and the representation and acquisition of Knowledge.
These three areas together accounted for about 607. of
all the papers.

The Evaluation function From the shifts in allocation of
research effort, we can draw some conclusions about the
evaluation function that is used to guide the best-first
search. But we must note carefully whose evaluation
function it is. To those of us who have been working in
Al, it is obvious that the shifts in emphasis among speech
recognition, robotry, and automatic programming (these
especially, but not exclusively) have been determined to
a much greater degree by the judgments of funding
agencies as to what kinds of work were more likely to
ead promptly to practical application, than by the
judgments of the researchers as to what lines of inquiry
neld the greatest promise for advancing fundamental
Knowledge.

In part, this vulnerability of the research agenda to
genuine or Imagined priorities for applications is the
price that Al pays for being a "big science" field,
dependent for its progress on the availabity of expensive
computing equipment. But some other big science fields
for example, radio astronomy have attained
considerable freedom in selecting their research goals,
and we can only hope that Al can gradually acquire
similar autonomy as the field becomes better established
and the fundamental character of the phenomena it
studies more widely understood.

If | were to contrast my own personal evaluation
function with the function Inferred from the actual
present allocation of effort, | would be inclined to give
considerably more attention to the domains of robotry
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(that is, the Al aspects of robotry) and automatic
programming than these areas are now receiving. Later,
| will have a few words to say about the reasons for my
preferences.

Common Themes One factor that mitigates the possible
damage done by the whims of funding agencies and the
fads of Al research itself, is that there is a considerable
overlap in the basic problems encountered, and in the
basic Al mechanisms required to solve those problems in
all the task domains where Al research is carried on.
Best-first search, for example, is a recurring theme,
regardless of whether we are concerned with
theorem-proving, chess playing, or robot planning.
Similar problems of data representation, organization, and
access must be faced in almost all task domains. Many
tasks call for natural language capabilities of wider or
narrower extent. The context-dependence of knowledge
acquired through search, and the extrapolation of
knowledge from one context to another is a recurrent
theme. Because of these commonalities, progress in our
understanding of any new task is likely to contribute
substantially to progress for other, temporarily dormant
tasks.

But these benefits of commonality will be realized only
If we pay explicit attention to the transfer problem. The
existence of multiple parallel research efforts in different
tasks domains increases the danger that the same
principles and mechanisms will be reinvented, perhaps
more than once, by specialized investigators who are
unaware of work going on outside their own narrow
areas. As the Al research field grows and more
iInvestigators enter it, specialization will undoubtedly
grow also (it has already), and the dangers of duplication
will increase correspondingly.

Perhaps the most important preventive step against
reinventing wheels is to define research goals not simply
in terms of constructing programs that will perform
specific tasks well, but in terms of using programs as
examples and test beds for generating and illuminating
general principles. Computer science has its roots in
both scientific and engineering traditions. For the
engineer — at least the nonacademic engineer ~ the
device Is the thing; the proof of his pudding is in how
well the system he has designed works. For the
computer scientist, the device (the program) is not an end
in itself, but a means for testing whether particular
methods and principles, incorporated in the device,
perform the functions for which they are intended.
Journal referees and reviewers of funding proposals can
contribute much to the development of Al by insisting on
these Dbroader goal specifications for Al research
projects.

There would also appear to be room in Al research for
more generalists and theorists who would devote their
attention to extracting general principles by comparative
analysis of programs in different task domains. Of course
such activity goes on at the present time, but perhaps it
would be encouraged further if we did not restrict the
term "theory" to formal, mathematical developments.

It might appear that | have fallen into a contradiction.
Using AM and BACON as my models of discovery
programs, t pointed out the futility of trying to predict
the course of discovery. Now, only a few paragraphs
later, | am expressing my views about the allocation of



effort. There is, in fact, no contradiction. In best-first
search, choosing an evaluation function and using it to
guide the allocation of effort is unavoidable. This does
not mean that one can predict where the search will lead;
but a well-choosen evaluation function can indicate the
most productive points at which it can start. Let me offer
a few illustrations.

Research on Robots One criterion of a promising task
domain is that successful Al programs in the domain will
rely on important components of intelligence that have
not been much explored in other research. Robotry is a
promising domain, because it takes us away from planning
actions In simple worlds of the Imagination — where the
consequences of our actions can be deduced precisely —
iInto planning actions in complex real worlds, where we
must be prepared to readjust our estimates of the state
of the world repeatedly as our actions fall short of or
beside our intentions.

Methods for matching the predicted to the actual state
of the world, and for correcting the former to reflect the
latter, are fundamental to the success of systems that can
survive In complex environments and particularly in
environments where there is much uncertainty.

When | refer to robotry research, | have in mind
something rather different from the development of
Industrial robots that is now burgeoning in a number of
countries. Most industrial robots are being designed to
carry out fairly restricted ranges of tasks in factory
environments that are carefully tailored to the robots.
Moreover, Al techniques have not played a prominent
role in these developments, most of which come out of
the tradition of engineering control theory.

In this application, the residual status of Al methods is
again apparent. If an environment can be sufficiently
smoothed and simplified, then the methods of
servomechanism and control theory may provide the best
means for designing flexible devices to operate in that
environment. Al methods are likely to have a
comparative advantage in rough and complex
environments that have to be dealt with in their raw,
natural form. For this reason, research on vehicles
capable of locomoting autonomously on remote planets is
probably more relevant to basic issues in artificial
intelligence than is research on industrial robots that are
to operate in factory environments. The former kinds of
systems will have to be flexibly intelligent to a much
higher degree than the latter.

However, | do not want to overstate the case. As the
development of industrial robots goes forward, there is a
need for strong capabilities in visual pattern recognition,
a domain in which artificial intelligence concepts are likely
to play a role of increasing prominence. The point of my
example is that we don't simply want to seize on robotry
as a task domain, but want to ask what aspects of
robotry call especially for Al approaches, and what light
Is likely to be cast on general Al concerns by research
focused on those aspects.

Automatic Programming A second domain | singled out
as promising for Al research today is automatic
programming. Here again, the general value of the
research for advancing our basic understanding of
artificial intelligence depends on how the problem Is
defined, | have especially In mind systems that would
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take ill-structured and incomplete descriptions of a
desired program (of the sort we would give as
instructions to a human programmer), and transfer them
Into executable code. Automatic programming, so defined,
IS an excellent domain in which to experiment with the
automatic design of problem representations — a problem
we must address if we are to extend Al further Into
Ill-structured domains.

An additional reason why automatic programming tasks
deserve high priority on the research agenda is that they
offer excellent opportunities for work on natural
language and knowledge representation. Research in the
latter two fields has sometimes suffered from vagueness
in the specification of the task. To study natural
language effectively we must study particular kinds of
situations in which information and meanings have to be
communicated for a definite purpose. The automatic
programming task defines that purpose (as does also the
closely related task of understanding problem instructions
written in natural language). By the same token, we are
apt to learn most effectively about the problems of
knowledge representation in the context of a specific
task domain like automatic programming.

If we accept necessity as the mother of invention, we
must remember that another parent is needed too.
Automatic programming deserves a high rating for its
research potential only if there is reason to believe it
can be done — that our basic knowledge has reached the
point where it is reasonable to talk about automatic
design of task representation. | would argue that both
the progress ~ modest though it be — that has already
been made in automatic programming, and the progress in
the design of representations for other domains provide
favorable indications that we are ready for the next step
(Hayes & Simon, 1974).

Local and Global Knowledge A problem that has
plagued heuristic search systems from the beginning is
that information gathered at one node in a search
through a problem space is not generally usable by the
system to guide its search in other parts of the space.
The same information may have to be generated again
and again at different nodes.

Partly, this is a problem of information organization,
solvable through such devices as blackboard schemes
(Lesser & Erman, 1977). In such schemes, information is
not stored in association with the nodes at which it Is
generated, but is placed in a common space where it
becomes permanently available to all parts of the
program, and at all times during the exploration of the
problem space.

But there is a deeper problem with making information
more broadly available: the information may be true only
In a local context. Then the boundaries of this context
must be determined and associated with the information
before it can be exported safely. There is still not much
theory (or experience) in the Al literature as to how this
Is to be done, but some progress has been made toward
solving the problem in connection with research on
speech recognition programs and chess programs, both of
which are promising environments in which to pursue this
issue (Lesser ft Erman, 1977; Perdue ft Berliner, 1977).

Learning Systems In Al a great deal more progress has
been made in constructing performance programs than In




designing programs that learn. In the early history of
artificial intelligence, the topic of self-organizing systems
was pursued vigorously but, as it turned out, not
particularly successfully. As the best-first search
progressed, the nodes associated with this topic received
low evaluations, and were gradually abandoned.

Yet the topic of learning in Al is not at all dead; rather
it has been redefined. In early efforts, great importance
was attached to starting systems off at or near ground
level. The guarantee that they were learning was that
they started off Knowing almot nothing. Today, we
characterize learning in a somewhat different way; wa
look for adaptive change, and we look for that change to
be recursive and cumulative.

In the broadest sense, any program is a learning
program that gradully changes over time so that on each
new encounter with a particular kind of task it behaves in
a more appropriate way. In neither human beings nor
computers should we expect to find just a very limited
number of processes called "learning processes," for
there generally are a multitude of ways in which a
complex system can modify itself adaptively.

Learning will generally be incremental. That is, each
new step in adaptaation will itself improve the capacity
for further adaptation. A problem-solving system
becomes a learning system whenever it is designed so
that problem solutions can be stored and used to
contribute to subsequent problem-solving. Clearly,
discovery programs like AM and BACON are learning
programs, since their explicit task is to produce novel
outputs and to use those outputs recursively.

With this broader definition of learning, a whole
spectrum of Al systems qualify as learning systems.
Learning can connote all degrees of pasivity or activity of
the learner. Thus, at one extreme, we have interactive
systems aimed at making it easier for the programmer to
add new knowledge to an information structure, where
the program itself is a wholly passive learner. At the
other extreme, we have adaptive production systems that
are able to extract information from their experiences,
and use the information to improve themselves even
without explicit instruction from outside. Most systems
that learn from experience are aided, of course, if the
experience is organized for them in a favorable way — in
a succession of carefully graded lessons. It is the skill of
a good teacher to present experience in this way.

One might ask whether it is time to revive learning as
a major explicit goal of Al research. Since learning
pervades almost all aspects of Intelligent performance,
the right search strategy is probably to incorpooate
learning goals In our performance systems. That seems
to be a quite natural thing to do in building systems for
visual pattern recognition, for example, for automatic
programming, or for understanding natural language

Instructions.

But there are apprentices in the world as well as
Journeyman; and presumably the apprentice's first
concern in his learning rather that his performance. So
perhaps there is room, on the tree of Al research, for an
active branch that works with tasks In which learning and
adaptation are the central concerns. Considering the
recent rapid progress that has been made in constructing
adaptive production systems, good progress can be

anticipated along that branch, and | would assign it a
rather favorable evaluation. But the fact that some
investigators specialize in learning processes should not
deter the rest of us from experimenting with learning
components in our performance systems.

5. Conclusion

In this paper | have reviewed the Al community as if it
were a medium-size slightly parallel processor searching
its way in inductive, best-first fashion through the
problem space of intelligent action. | have compared it
with some of the existing Al programs that best
characterize the discovery process. The comparison does
not yield any great surprises, but perhaps provides some
reassurance.

As a typical example of a discovery program, the Al
community uses weak methods uder the guidance of a
somewhat imprecise evaluation function and vague
ultimate goals. It tries to discover the mechanisms that
enable a system Ilike the human mind to behave
purposefully, adaptively, and sometimes even effectively
over a wide range of difficult and ill-structured tasks.

The search is highly pragmatic, steered and redirected
by concrete empirical evidence culled from experiments
with programs operating in an accidentally determined
collection of task environments. The output of the
research is mostly encapsulated in heuristics, not yet
formalized in coherent theories of broad scope. All is
confusion and mild chaos, as it should be at an exciting
frontier of fundamental scientific inquiry. Although only a
quarter of a century old, the search has already yielded a
solid body of empirical knowledge about the nature of
Intelligence and the means of capturing it in programs.
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Skill of Intelligent Robot

Kunikatsu Takase
Electrotechnical Laboratory
Tokyo, Japan

ABSTRACT

This paper reviews the development of the intelligent robot and separates skills from high
level intelligence. It demonstrates that skills can be represented as virtual mechanisms
programmed in software. Virtual mechanisms are defined by controlling both motion and force
of a robot arm in a task related cartesian coordinate system. By adding monitoring, a
skillful robot system can be built. The skill of an intelligent robot is accumulated in the
form of task - particular knowledge that is a specification of the mechanism.

1. INTRODUCTION obtained, for example, during the development
of special purpose systems. The "Move" com-
Various intelligent robots have been developed mand in AL, for example, and its modification
by combining computer decision making with are not sufficient for specifying the dexteri-
mechanical mechanisms, especially with robot ous actions of robot arms. "Composing virtual
arms. In this field the efforts have been mechanisms by software" seems to be the best
mainly directed to developing high level in- control structure for the purpose.
telligence system such as for solving puzzles,
interpreting drawings or recognizing three- Recently the performance of arithmetic LSI has
dimensional objects. There has been little improved remarkably enabling us to carry out
study of low level intelligence relating to the exact calculation of dynamic models of a
skill or dexterity of a robot arm. |In order robot arm in the servo cycle, and to compose
to make the motion of a robot arm smoother and virtual mechanisms in software.

more adaptive, a series of studies - kinemat-
ics, trajectory calculation, sensory feedback
of a robot arm - were undertaken in the Artif-
icial Intelligence Project at Stanford Univer-
sity. But in general we are at the dawn of
the study of the skill of robot arms.

2. INTELLIGENT ROBOTS

In the beginning of 1970*s several Hand-Eye
systems had been developed at universities and

The practical study of assembly automation resea_rch Iaboratories. in the world. Those
which started as one of the applications of rqbotlc systems consisted of a camera and arm
intelligent robots is developing as an in- ‘é";th f6 éiegLrJee.s of _ftreedom bafj[d hc?or:npUtelra At
dependent area with remarkable results. Reli- antor niversity a robot which could suc-

cessfully solve the "instant insanity" puzzle

able assembly systems are bein released one
y 5y J was developed C1D. In this puzzle four cubes

after another. Although those are compara- . .

tively special-purpose low intelligence sys- with different colored faces must be stacked

tems, their skills are far more dexterious up so that no two similar color appear on any

than those of intelligent robots. It seems S;dej' A rcl)botdmadg at Hléa(l:ahl'ldcglumk u?der-

the increased skill of the intelligent robot stand simpie drawings and Dbul ock struc-
tures as specified in the drawings C23. At

could be obtained only through the integration

of task-particular knowledge that is normally the Electrotechnical Laboratory a robot was

developed, which could insert a beam into a
box with small clearance using visual feedback

The author has been a visiting scientist of [3]. In these robotic system intelligence had
Electrical Engineering at Purdue University, been applied to recognizing a 3-dimensional
West Lafayette, IN, since August 1978 until pattern, understanding a drawing, or solving
August 1979. puzzles.
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control of an
had been studied: arm

In order to realize computer
arm, several elements
design, servo system, transformation Dbetween
joint coordinates and cartesian coordinates,
computer interface, and robot operating sys-
tem. Although a good deal of effort was de-
voted to the computer control of the arm, the
arm only could perform "pick and place" opera-
tions, that is, to pick up an object, to
transfer it and then to place it. Some at-
tempts were made to make the a robot arm more

dexterious, for example, by adding tactile
sensors in order to grasp objects more dex-
teriously. None of those attempts was, howev-

reliable ele-
In the robotic sys-

er, successful
ments to
tem.

in developing a
be incorporated

It was Iin the Assembly Automation
developed at Stanford University
ferred to as the AL System) that an intelli-
gent robot was first able to act in the prac-
tical world, emerging from the stage of "play"
In the block world C5,6,7D. Assembly
processes, such as parts mating and inserting,
required adaptive object handling capabilities
found only in a human workers were demonstrat-
ed. These tasks could not be performed by
conventional hard automation machines.

Systems
(later re-

In many cases of low volume assembly produc-
tion programmability was the key factor to
enhance the utility of the assembly system.

In the AL system much attention paid to the
design of task description language. AL of-
fered the programming structure in which a

user could describe an assembly procedure in
terms of multilevel commands ranging from the
simple "move" command to task-level commands
[4]. High-level assembly statements would be

expanded into the sequence of move-level com-
mands in a general manner.

In an assembly system robot arms have to be
skillful enough to be able to carry out parts
mating and other adaptive motions. In the AL
system, precise motions were controlled, based
on trajectory calculation and the modification
of motions based upon force feedback or touch
feedback to adapt to the outer world. To in-
tegrate these functions into the system,
software servoing was used, where a digital
computer controlled each motor drive level
directly. By using such a control scheme, the
capability of the robot arm was remarkably im-
proved.

3. PRACTICAL ASSEMBLY AUTOMATION

While general assembly
studied

automation was being
at Stanford University, other practi-
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cal research was started at several other Ia-
boratories and companies. A system, which
consisted of position controlled robots and

various specially designed tools was developed
at Kawasaki Unimate to assemble a gasoline en-

gine. The work demonstrated a practical ap-
proach to assembly automation. Hitachi
developed a precise Insertion robot which
operated reliably based on active accommoda-
tion by a flexible force sensing mechanism
C81. A position controlled robot equipped
with a compliance mechanism (RCC) at the wrist
which could perform precise insertion quickly

without force feedback was developed at Draper
Laboratory C93. At SRl a system which could
carry out assembly using a passive accommoda-
tion table had been developed C103. In these
practical system, global motion was controlled
by simple positioning robots and fine accommo-
dation was accomplished by tools specially
designed for the tasks.

chamfer

hole

Fig. 1 Peg insertion by compliance

mechanism

It would be instructive to compare the opera-
tion of a practical system with that of an in-
telligent robot. We will take peg insertion
as an example. The robot attached with a ROC
at the wrist will move a peg into a hole. As
shown in Fig. 1, if there is a misalignment
between the peg and the hole, the peg will be
guided to the hole by the chamfer., The ROC is
a compliance mechanism which provides the ac-
commodation. If a lateral force is exerted at
the tip of the peg, it will translate without
rotation, and if a torque is exerted at the
tip, it will rotate without translation. With
the help of the chamfer any translation error



Free joint
Robot arm

Normal of
chamfer

Hole-bottom

Fig. ¢ Peg insertion by
AL system

IS corrected- During the insertion process
into the hole any rotation error is corrected.
could be

In the AL system the peg insertion

described as:

MOVE peg TO hole-bottom
WITH FORCE = 0 ALONG XY OF hole-bottom

This command means "move coordinate frame peg
to hole-bottom with two proper joints free so
that the x and y components of force are
zero." With this method the peg insertion
sometimes becomes impossible. For example, if
a free joint lies close by the normal of the
chamfer as shown in Fig. 2, the angle Dbetween
chamfer tangent and free surface becomes less
then arctangent of friction coefficient. The
peg will be locked. This is indeed a probable
case. This disadvantage of the AL system
shows not only that the system can not perform
the peg insertion in this way, but also that
the system lacks the systematic representation
capability of the necessary skill. It is un-
desirable that the operation of a robot arm is
dependent on its configuration. A user would
like to write machine independent programs.
In general a robot arm skill consists of pat-
terns of action to the task environment, in-
terpretation of results, and the decision of
further action. We have to represent the
knowledge about an action and its result,
which is task particular, so that it is robot
arm independent.

4. BASIC CONTROL SCHEVE FOR SKILLFUL ROBOT ARV

4.1 Control in Cartesian Coordinate Systems

If the form of assembly is defined, it is most
efficient to use the special devices or tools.
Not only in assembly, but in general, it s
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most efficient to design mechanisms suited for
the task, and to <control the operation of
these mechanism using sensory feedback. Hita-
chi, Draper Laboratory, and SRI had taken this
approach N developing assembly systems.
Therefore it is senseless to simply compare
the capabilities of special-purpose systems
and intelligent robots in which generalities
are most important. The skill representation
capability of the intelligent robot should
also be general so as to provide the skill of
special-purpose tools. If we could build up
virtual mechanisms by software, we would be
able to utilize all task particular knowledge
which is obtained from the study of special-
purpose tools. And we will be able to ex-
change tools and skills by software.

would be re-
mechanisms

What kind of robot arm control
quired In order to build up virtual
by software? It is motion and force control
N cartesian coordinate systems. A few
methods have been proposed to realize such a
type of control [11,12]. We will describe
here the direct servoing method Iin cartesian
coordinates that seems to have the highest
generality. As shown in Fig. 3 this system
provides for the real time transformation
between joint coordinates and cartesian coor-
dinates, the transformation of acceleration
and force in cartesian coordinates into joint
torques. In addition, coliolis force, centri-
fugal force and gravity loading force are can-
celed in real-time.

Cancel lation of
coliolis force,

centrifugal force, and r
gravity loading force
—
- -{ Robot arm } .+
Joint Joint
torque angle
| Coordinate I
Set Transformation
. acceleration ™
l
S Control in
cartesian X
Set force coordinate r?artesian
] system coordinates
s ——

Fig. 3 Servo system for arm control in
cartesian coordinate system
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4.2 Real-time Computation

As the dynamic model of a robot arm is very
complicated it has been considered impossible
to compute joint torques in real-time. Howev-
er, recent improvement both in calculation al-
gorithms and in arithmetic elements has now
made it realistic. Dynamic model in matrix
representation, while simple, was \ery time
consuming to compute. Bejczy developed an ap-
proximation model which was very fast to com-
pute. The author formulated the equations of
motion in a vector representation. Walker
devised a recursive algorithm for evaluating
the model In vector representation without
redundant repetitive calculation [13]. As
shown in Table, we can now calculate joint
torques with this algorithm about 200 times
faster than using the matrix method.

Table: List of time to compute joint
forces and moment on the PDP 11/45
(Reproduced from (131)

Model Language Computation time
{
Matrix Fortran 7.9 sec
Model {L
Rejczy Fortran 0.0025 sec
b - —t
Walker Fortran 0.0335 sec
-
Floating Point
Walker Assembler 0.0033 sec l
Powerful arithmetic elements such as

16°" x 16°"" LSl multiplier with 200 nano
second execution time, have also become avail-
able. |t IS not difficult to develop
special-purpose processors with these arith-
metic elements for performing fast vector cal-
culation such as dot product or cross product.
It would also be possible to make the calcula-
tion speed shown in Table ten times as fast.
Above considerations show that sophisticated
calculation for cartesian coordinates control
could easily be carried out in less than 10
mil Li seconds.

4.3 Torque Controlled Robot Am

Reliable force sensing systems have not Dbeen
obtained yet, although force sensing, espe-
cially wrist force sensors have been actively
studied. At the present stage it would be Im-
possible to incorporate the force sensors into
the arm control system controlling motion and
force in cartesian coordinates. The author
and co-workers have developed a robot arm
driven by magnetic powder clutches and have



