131 research outputs found

    KEWPIE: a dynamical cascade code for decaying exited compound nuclei

    Full text link
    A new dynamical cascade code for decaying hot nuclei is proposed and specially adapted to the synthesis of super-heavy nuclei. For such a case, the interesting channel is the tiny fraction that will decay through particles emission, thus the code avoids classical Monte-Carlo methods and proposes a new numerical scheme. The time dependence is explicitely taken into account in order to cope with the fact that fission decay rate might not be constant. The code allows to evaluate both statistical and dynamical observables. Results are successfully compared to experimental data.Comment: 15 pages, 3 Figures, Submitted to Comp. Phys. Co

    An isospin dependent global nucleon-nucleus optical model at intermediate energies

    Full text link
    A global nucleon-nucleus optical potential for elastic scattering has been produced which replicates experimental data to high accuracy and compares well with other recently formulated potentials. The calculation that has been developed describes proton and neutron scattering from target nuclei ranging from carbon to nickel and is applicable for projectile energies from 30 to 160 MeV. With these ranges it is suitable for calculations associated with experiments performed by exotic beam accelerators. The potential is also isospin dependent and has both real and imaginary isovector asymmetry terms to better describe the dynamics of chains of isotopes and mirror nuclei. An analysis of the validity and strength of the asymmetry term is included with connections established to other optical potentials and charge-exchange reaction data. An on-line observable calculator is available for this optical potential.Comment: 31 pages, 21 figures, 4 tables; Accepted to Phys. Rev. C. This version includes corrections to Eq. 1 and Table 1. Erratum sent to Phys. Rev.

    A Method for Helping Discover the Dependencies of a Relation

    No full text

    Remarks on a method for solving second order differential equations

    No full text
    • …
    corecore