308 research outputs found

    Recent Decisions

    Get PDF
    ANTITRUST--Import Restrictions--Import Ban Ordered as Equitable Relief for Violation of Section 7 of the Clayton Act Must Not Discriminate Against Foreign Producers or Reduce Competition ======================= European Communities--Restrictive Trade Practices--Patent Licensing Agreements that Restrict Competition between Member States Without Improving Production or Distribution or Promoting Technical or Economic Progress Violate Article 85 ======================== JURISDICTION--CONTINENTAL SHELF--ABANDONED VESSEL SALVAGED FROM THE SURFACE OF THE UNITED STATES CONTINENTAL SHELF BEYOND TERRITORIAL WATERS IS NOT UNDER JURISDICTION OF UNITED STATES GOVERNMENT =========================== IMMIGRATION--A STATE MAY PROHIBIT THE EMPLOYMENT OF ILLEGAL ALIEN

    Development of the Circulation Control Flow Scheme Used in the NTF Semi-Span FAST-MAC Model

    Get PDF
    The application of a circulation control system for high Reynolds numbers was experimentally validated with the Fundamental Aerodynamic Subsonic Transonic Modular Active Control semi-span model in the NASA Langley National Transonic Facility. This model utilized four independent flow paths to modify the lift and thrust performance of a representative advanced transport type of wing. The design of the internal flow paths highlights the challenges associated with high Reynolds number testing in a cryogenic pressurized wind tunnel. Weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions ranging from 0.1 to 10 lbm/sec. Results from the test verified system performance and identified solutions associated with the weight-flow metering system that are linked to internal perforated plates used to achieve flow uniformity at the jet exit

    Bibliometric Analysis of Gender Authorship Trends and Collaboration Dynamics over 30 Years of Spine 1985 to 2015

    Get PDF
    Study Design. A bibliometric analysis. Objective. The aim of this article was to study bibliometric changes over the last 30 years of Spine. These trends are important regarding academic publication productivity. Summary of Background Data. Inflation in authorship number and other bibliometric variables has been described in the scientific literature. The issue of author gender is taking on increasing importance, as efforts are being made to close the gender gap. Methods. From 1985 to 2015, 10-year incremental data for several bibliometric variables were collected, including author gender. Standard bivariate statistical analyses were performed. Trends over time were assessed by the Cochran linear trend. A P < 0.05 was considered statistically significant. Results. Inclusion criteria were met for 1566 manuscripts. The majority of the manuscripts were from North America (51.2%), Europe (25.2%), and Asia (20.8%). The number of manuscripts, authors, countries, pages, and references all increased from 1985 to 2015. There was a slight increase in female first authors over time (17.5% to 18.4%, P = 0.048). There was no gender change over time for corresponding authors (14.3% to 14.0%, P = 0.29). There was an 88% increase in the percentage of female first authors having male corresponding authors (P = 0.00004), and a 123% increase in male first authors having female corresponding authors (P = 0.0002). The 14% to 18% of female authors in Spine is higher than the ∼5% female membership of the Scoliosis Research Society and North American Spine Society. Conclusion. Manuscripts in Spine over the past 30 years have shown a significant increase in the number of authors, collaborating institutions and countries, printed pages, references, and number of times each manuscript was cited. There has been a mild increase in female first authorship, but none in corresponding authorship. Increases in female authorship will likely require recruitment of more females into the discipline rather than providing females in the discipline with authorship opportunities. Level of Evidence: N/

    Enhancements to the FAST-MAC Circulation Control Model and Recent High-Reynolds Number Testing in the National Transonic Facility

    Get PDF
    A second wind tunnel test of the FAST-MAC circulation control model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. The model was configured for low-speed high-lift testing with flap deflections of 30 and 60 degrees, along with the transonic cruise configuration with zero degree flap deflection. Testing was again conducted over a wide range of Mach numbers up to 0.88, and Reynolds numbers up to 30 million based on the mean chord. The first wind tunnel test had poor transonic force and moment data repeatability at mild cryogenic conditions due to inadequate thermal conditioning of the balance. The second test demonstrated that an improvement to the balance heating system significantly improved the transonic data repeatability, but also indicated further improvements are still needed. The low-speed highlift performance of the model was improved by testing various blowing slot heights, and the circulation control was again demonstrated to be effective in re-attaching the flow over the wing at off-design transonic conditions. A new tailored spanwise blowing technique was also demonstrated to be effective at transonic conditions with the benefit of reduced mass flow requirements

    ColoType: a forty gene signature for consensus molecular subtyping of colorectal cancer tumors using whole-genome assay or targeted RNA-sequencing

    Get PDF
    Colorectal cancer (CRC) tumors can be partitioned into four biologically distinct consensus molecular subtypes (CMS1-4) using gene expression. Evidence is accumulating that tumors in different subtypes are likely to respond differently to treatments. However, to date, there is no clinical diagnostic test for CMS subtyping. In this study, we used novel methodology in a multi-cohort training domain (n = 1,214) to develop the ColoType scores and classifier to predict CMS1-4 based on expression of 40 genes. In three validation cohorts (n = 1,744, in total) representing three distinct gene-expression measurement technologies, ColoType predicted gold-standard CMS subtypes with accuracies 0.90, 0.91, 0.88, respectively. To accommodate for potential intratumoral heterogeneity and tumors of mixed subtypes, ColoType was designed to report continuous scores measuring the prevalence of each of CMS1–4 in a tumor, in addition to specifying the most prevalent subtype. For analysis of clinical specimens, ColoType was also implemented with targeted RNA-sequencing (Illumina AmpliSeq). In a series of formalin-fixed, paraffin-embedded CRC samples (n = 49), ColoType by targeted RNA-sequencing agreed with subtypes predicted by two independent methods with accuracies 0.92, 0.82, respectively. With further validation, ColoType by targeted RNA-sequencing, may enable clinical application of CMS subtyping with widely-available and cost-effective technology

    Genotype–phenotype correlations in individuals with pathogenic RERE variants

    Get PDF
    Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype–phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7

    Deep phenotyping of the neuroimaging and skeletal features in KBG syndrome: a study of 53 patients and review of the literature

    Full text link
    Background: KBG syndrome is caused by haploinsufficiency of ANKRD11and is characterised by macrodontia of upper central incisors, distinctive facial features, short stature, skeletal anomalies, developmental delay, brain malformations and seizures. The central nervous system (CNS) and skeletal features remain poorly defined. Methods: CNS and/or skeletal imaging were collected from molecularly confirmed individuals with KBG syndrome through an international network. We evaluated the original imaging and compared our results with data in the literature. Results: We identified 53 individuals, 44 with CNS and 40 with skeletal imaging. Common CNS findings included incomplete hippocampal inversion and posterior fossa malformations; these were significantly more common than previously reported (63.4% and 65.9% vs 1.1% and 24.7%, respectively). Additional features included patulous internal auditory canal, never described before in KBG syndrome, and the recurrence of ventriculomegaly, encephalic cysts, empty sella and low-lying conus medullaris. We found no correlation between these structural anomalies and epilepsy or intellectual disability. Prevalent skeletal findings comprised abnormalities of the spine including scoliosis, coccygeal anomalies and cervical ribs. Hand X-rays revealed frequent abnormalities of carpal bone morphology and maturation, including a greater delay in ossification compared with metacarpal/phalanx bones. Conclusion: This cohort enabled us to describe the prevalence of very heterogeneous neuroradiological and skeletal anomalies in KBG syndrome. Knowledge of the spectrum of such anomalies will aid diagnostic accuracy, improve patient care and provide a reference for future research on the effects ofANKRD11variants in skeletal and brain development

    What Should Vaccine Developers Ask? Simulation of the Effectiveness of Malaria Vaccines

    Get PDF
    A number of different malaria vaccine candidates are currently in pre-clinical or clinical development. Even though they vary greatly in their characteristics, it is unlikely that any of them will provide long-lasting sterilizing immunity against the malaria parasite. There is great uncertainty about what the minimal vaccine profile should be before registration is worthwhile; how to allocate resources between different candidates with different profiles; which candidates to consider combining; and what deployment strategies to consider.We use previously published stochastic simulation models, calibrated against extensive epidemiological data, to make quantitative predictions of the population effects of malaria vaccines on malaria transmission, morbidity and mortality. The models are fitted and simulations obtained via volunteer computing. We consider a range of endemic malaria settings with deployment of vaccines via the Expanded program on immunization (EPI), with and without additional booster doses, and also via 5-yearly mass campaigns for a range of coverages. The simulation scenarios account for the dynamic effects of natural and vaccine induced immunity, for treatment of clinical episodes, and for births, ageing and deaths in the cohort. Simulated pre-erythrocytic vaccines have greatest benefits in low endemic settings (<EIR of 10.5) where between 12% and 14% of all deaths are averted when initial efficacy is 50%. In some high transmission scenarios (>EIR of 84) PEV may lead to increased incidence of severe disease in the long term, if efficacy is moderate to low (<70%). Blood stage vaccines (BSV) are most useful in high transmission settings, and are comparable to PEV for low transmission settings. Combinations of PEV and BSV generally perform little better than the best of the contributing components. A minimum half-life of protection of 2–3 years appears to be a precondition for substantial epidemiological effects. Herd immunity effects can be achieved with even moderately effective (>20%) malaria vaccines (either PEV or BSV) when deployed through mass campaigns targeting all age-groups as well as EPI, and especially if combined with highly efficacious transmission-blocking components.We present for the first time a stochastic simulation approach to compare likely effects on morbidity, mortality and transmission of a range of malaria vaccines and vaccine combinations in realistic epidemiological and health systems settings. The results raise several issues for vaccine clinical development, in particular appropriateness of vaccine types for different transmission settings; the need to assess transmission to the vector and duration of protection; and the importance of deployment additional to the EPI, which again may make the issue of number of doses required more critical. To test the validity and robustness of our conclusions there is a need for further modeling (and, of course, field research) using alternative formulations for both natural and vaccine induced immunity. Evaluation of alternative deployment strategies outside EPI needs to consider the operational implications of different approaches to mass vaccination

    Genotype–phenotype correlations in individuals with pathogenic RERE variants

    Get PDF
    Heterozygous variants in the arginine‐glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin‐1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss‐of‐function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine‐rich region in the Atrophin‐1 domain. We have also identified a recurrent two‐amino‐acid duplication in this region that is associated with the development of a CHARGE syndrome‐like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype–phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7.We describe nine unrelated individuals who carry partial deletions or putatively deleterious sequence variants in RERE. An analysis of clinical and molecular data from individuals with mutations affecting RERE suggests the existence of novel genotype‐phenotype correlations and demonstrates that a high percentage of RERE pathogenic variants affect a histidine‐rich region in the Atrophin‐1 domain. We have also identified a recurrent two‐amino‐acid duplication in this region that is associated with the development of a CHARGE syndrome‐like phenotype.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143789/1/humu23400_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143789/2/humu23400.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143789/3/humu23400-sup-0001-SuppMat.pd
    corecore