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colotype: a forty gene signature 
for consensus molecular subtyping 
of colorectal cancer tumors using 
whole‑genome assay or targeted 
RnA‑sequencing
Steven A. Buechler1*, Melissa t. Stephens2, Amanda B. Hummon3, Katelyn Ludwig4, 
emily cannon1, tonia c. carter5, Jeffrey Resnick6, Yesim Gökmen‑Polar7 & Sunil S. Badve7,8

colorectal cancer (cRc) tumors can be partitioned into four biologically distinct consensus molecular 
subtypes (CMS1‑4) using gene expression. Evidence is accumulating that tumors in different subtypes 
are likely to respond differently to treatments. However, to date, there is no clinical diagnostic test 
for cMS subtyping. in this study, we used novel methodology in a multi‑cohort training domain 
(n = 1,214) to develop the ColoType scores and classifier to predict CMS1‑4 based on expression of 
40 genes. In three validation cohorts (n = 1,744, in total) representing three distinct gene‑expression 
measurement technologies, ColoType predicted gold‑standard CMS subtypes with accuracies 0.90, 
0.91, 0.88, respectively. To accommodate for potential intratumoral heterogeneity and tumors of 
mixed subtypes, ColoType was designed to report continuous scores measuring the prevalence of each 
of CMS1–4 in a tumor, in addition to specifying the most prevalent subtype. For analysis of clinical 
specimens, colotype was also implemented with targeted RnA‑sequencing (illumina AmpliSeq). 
In a series of formalin‑fixed, paraffin‑embedded CRC samples (n = 49), ColoType by targeted RNA‑
sequencing agreed with subtypes predicted by two independent methods with accuracies 0.92, 0.82, 
respectively. With further validation, colotype by targeted RnA‑sequencing, may enable clinical 
application of CMS subtyping with widely‑available and cost‑effective technology.

Colorectal cancer (CRC) is the fourth most common cancer in the U.S. and the second leading cause of cancer 
deaths. Attempts to reduce CRC deaths have been complicated by the molecular heterogeneity of the disease 
leading to differential responses to therapies. Over the past decade, numerous gene expression-based subtype 
systems were developed to better characterize CRC 1–6. To resolve potential disparities between these systems, the 
Colorectal Cancer Subtyping Consortium (CRCSC) published the consensus molecular subtypes (CMS), which 
partitioned CRC tumors into CMS1, CMS2, CMS3, CMS4 and a small set of unclassified  tumors7. Since publica-
tion of the CMS subtypes, numerous studies have explored how patients in different subtypes exhibit differential 
sensitivities to commonly used  drugs8–15, contributing evidence to the clinical utility of CMS.

Progress towards clinical application of the CMS subtypes has been limited by the complexity of the CMS 
subtyping method. CRCSC created the CMSclassifier computer application for CMS subtyping using expres-
sion of hundreds of genes from whole-genome  data7. The CMScaller application also uses whole-genome 
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data and expression values of over 500 genes to report the CMS subtypes for tumor samples and preclinical 
 models16. To analyze formalin-fixed, paraffin-embedded (FFPE) tissue samples collected in clinical studies, 
researchers have developed in-house classifiers using NanoString nCounter  system8,9,11,17,  microarrays13, or 
 immunohistochemistry18. However, to date, there is no commercially available assay that meets the quality-
control requirements of a clinical diagnostic test.

In this study, with the ultimate goal of producing a clinical assay for CMS subtyping, we developed the Colo-
Type scores and classifier for CMS subtyping based on expression of 40 genes, implemented by whole-genome 
analysis or by targeted RNA-sequencing with an FFPE tissue source.

Materials and methods
Whole‑genome data from publicly available patient cohorts. Genome-wide gene expression data 
from multiple cohorts generated using multiple platforms (two microarray platforms and RNA-sequencing) 
were collated for development and validation of ColoType.

Cohort A Cohort A (n = 1,888, Table 1) consisted of gene expression data from colon cancer samples hybrid-
ized to Affymetrix hgu133plus2 arrays comprised of the datasets GSE13067, GSE13294, GSE14333, GSE17536, 
GSE2109, GSE23878, GSE35896, GSE37892, GSE39582, KFSYCC. Duplicate samples in GSE14333 and GSE17536 
were eliminated. Gene expression values normalized using  fRMA19 were obtained from the Synapse Project 
2623706 for all datasets except GSE2109. For GSE2109, the CEL files available on the Synapse archive were nor-
malized using fRMA and batch-effect corrected to the other cohorts using  ComBat20 from the SVA R package.

Clinical characteristics and the Colorectal Cancer Subtyping Consortium (CRCSC) consensus molecular 
subtype classifications for each sample in Cohort A were also obtained from Synapse Project 2623706, and sum-
marized herein (Table 1). For the purpose of deriving and validating the ColoType CMS scores, Cohort A was 
partitioned into training (n = 683) and validation (n = 1,205) sets. The training set was defined to be all samples in 
the datasets GSE17536 and GSE39582. The CRCSC  reported7 CMS classifications obtained by network analysis, 
their random forest classifier, and a classification we term “CMS-final” that agreed with the network classification 
when that process produced a result, and agreed with the random forest classifier for samples unclassified by the 
network method. In this paper the term “CRCSC CMS subtype” refers to “CMS-final” unless noted otherwise.

Cohort B Cohort B (n = 688) consisted of samples from the PETACC-3 clinical  trial21 for which mRNA was 
hybridized to an Almac custom Affymetrix microarray platform. Gene expression and clinical data were obtained 
from Synapse Project 2623706. The cohort was randomly divided into training (n = 342) and validation (n = 346) 
sets balanced for CRCSC CMS subtype (Table 1).

Cohort C: Cohort C was formed from TCGA-COAD (n = 382)22. Raw RNA-sequencing (RNA-seq) data (BAM 
files) were obtained from Genomic Data Commons (https ://gdc.cance r.gov). Following alignment to the Ensembl 
v90 genome build, gene expression was measured as the log base 2 of transcripts per million (TPM) derived 
from count values using the feature counts  algorithm23,24. This realignment enabled better comparison between 

Table 1.  Characteristics of colon cancer samples used for training and validation of ColoType. a Formed from 
datasets (n): GSE17536 (167), GSE39582 (516). b Formed from datasets (n): GSE13067 (69), GSE13294 (150), 
GSE14333 (149), GSE2109 (264), GSE23878 (31), GSE35896 (57), GSE37892 (121), KFSYCC (276). c The CMS 
classification as reported by CRCSC combining the network and random forest classifiers, termed CMS-final 
in this study.

Cohort A (Affymetrix) Cohort B (PETACC-3) Cohort C (COAD)

Training 
(n = 683)a

Validation 
(n = 1,205)b Training (n = 342)

Validation 
(n = 346) Training (n = 189)

Validation 
(n = 193)

Assay platform Affymetrix hgu-
133plus2

Affymetrix hgu-
133plus2 custom array custom array RNA-seq RNA-seq

Stage

1 61 134 NA NA 28 29

2 293 206 NA NA 65 62

3 241 164 NA NA 58 48

4 88 30 NA NA 15 14

NA 0 612 NA NA 7 2

Median age 68 70 NA NA 67 69

Microsatellite instability

MSI 72 86 NA NA 32 28

MSS 402 133 NA NA 133 123

NA 209 653 NA NA 8 4

CMSc

CMS1 117 135 39 39 28 26

CMS2 281 315 120 121 60 50

CMS3 81 121 36 37 25 24

CMS4 141 200 72 73 41 37

NONE 63 101 75 76 19 18

https://gdc.cancer.gov
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COAD expression data and whole-genome and targeted RNA-seq data for the Marshfield cohort. Patient-level 
clinical data and CMS classifications for COAD were obtained from Synapse Project 2623706. To support the 
development of ColoType, COAD was randomly divided into training (n = 189) and validation sets (n = 193) 
balanced for CRCSC CMS subtypes (Table 1).

To enable coordinated derivation in these multiple cohorts we restricted expression data to array features 
annotated to a unique ENTREZID, and further restricted to ENTREZIDs assayed in all three cohorts. For each 
such ENTREZID, we restricted expression to the array feature with maximal interquartile range in the cohort’s 
training set, among all features representing the ENTREZID. In the end, for a set of ENTREZIDs assayed in all 
three cohorts, there was a unique expression value for each sample.

Size factor normalization of RnA‑seq data. To enable comparisons between samples, raw RNA-seq 
data are typically normalized by dividing read counts by a sample-specific normalization factor. In whole-
genome normalization methods, such as RPKM or TPM, the normalization factor involves the total reads for 
the sample and the gene length, inappropriate for targeted RNA-sequencing. For targeted RNA-sequencing, 
data from a reference sample can be  used25. To enable more general application, we used a so-called pseudo-
reference-sample scaling  factor26, as applied in the DESeq R package.

Given a set P of samples, and raw counts for each gene in a set G and sample in P, expression values by size 
factor normalization are computed as follows.

• The size factor for gene i is the geometric mean of the raw counts for gene i for all samples in P;
• The scaled count value for a gene i and sample j is the raw count number divided by the size factor for gene i;
• The size factor for sample j is the median of the scaled counts in sample j over all genes in G;
• The size factor normalized expression value for gene i in sample j is then the scaled counts for gene i divided 

by the size factor for sample j.

Size factor normalization was applied to whole-genome sequencing data as well as targeted RNA-seq data 
to enable comparison of subtyping methods in data obtained by multiple sequencing methods. Modeling with 
size factor normalized data in this study used log2 transformed size factor normalized expression values as gene 
expression values.

Marshfield cohort (novel). Data on a cohort of stage 2 colon cancer patients was obtained from Marsh-
field Clinic, Marshfield, Wisconsin (Table 2). Clinical data from electronic health records, including follow-up 
for at least five years, and glass slides from formalin-fixed paraffin embedded surgical resection samples were 
obtained for each patient. Regions of tumor tissue were identified by pathologist review of H&E slides.

RNA‑seq analysis of Marshfield cohort. Tumor tissue was obtained from tumor-rich regions of 
unstained slides (1 or 2 per patient) and deparaffinized by Xylene wash. mRNA was then extracted with Recov-
erAll Total Nucleic Acid Isolation Kit.

FFPE RNA was prepared for sequencing using two independent library construction methods: RNA-seq 
using ribosomal RNA depletion, and AmpliSeq for Illumina Custom RNA targeted panel. RNA was quantitated 
by Qubit using the RNA HS Assay (Thermo Fisher Scientific Inc.) and assessed for integrity on the Bioanalyzer 
2100 (Agilent Technologies Inc.). 80–100 ng of RNA was used as input for the library construction for both 
approaches. Quantifiable mRNA was obtained for 49 samples.

For whole-genome analysis, libraries were constructed using the NEBNext Ultra II Directional Library 
Prep kit with NEBNext rRNA Depletion module (New England Biolabs) (Cat. #E7765S, E6350L) following 

Table 2.  Summary clinico-pathological features of the Marshfield cohort.

feature Marshfield cohort (n = 49)

Age at surgery (median) 76.4

Stage 2 49

T-stage

 T2 1

 T3 44

 T4 4

Location

 Ascending 17

 Transverse 21

 Descending 2

 Sigmoid 9

Distant metastases 7

Deaths 18

Median follow-up days 2,212
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manufacturers recommendations. Libraries were quality assessed on the Bioanalyzer DNA 7,500 chip and quan-
tified by qPCR using the Illumina Kapa Library Quantification Kit (Roche Diagnostics). The libraries were 
normalized, pooled in equal molar amounts, and sequenced on 6 lanes of a NextSeq v2.5 High Output flowcell 
using paired 75 bp reads. All libraries generated > 27 million raw reads. FASTQ files were aligned to the Ensembl 
v90 genome build, and gene counts computed using the feature counts  algorithm23,24, and gene expression values 
computed by size factor normalization, log2 transformed.

ColoType panel genes served as targets for a custom AmpliSeq RNA panel. Libraries were constructed using 
the AmpliSeq for Illumina custom RNA panel reference guide (Illumina Inc.) following the standard workflow. 
Libraries were quality assessed on the Bioanalyzer DNA 7,500 chip and quantified by qPCR using the Illumina 
Kapa Library Quantification Kit. The libraries were normalized, pooled in equal molar amounts, and sequenced 
on 1 lane of a MiSeq v2 (300 cycle) kit using paired 150 bp dual indexed reads for an average output of 203,000 
raw reads per library. FASTQ files were aligned to the Ensembl v90 genome build and gene counts computed 
using the feature counts  algorithm23,24 and gene expression values computed as log2 of size factor normalized 
values, as for whole-genome sequencing data.

Multigene risk score classification method. The cornerstone of a multigene expression-based clini-
cal diagnostic test is the precise and reproducible quantification of species of mRNA. The multigene risk score 
(MRS) classification method was designed to classify samples by making efficient use of a small number of 
precisely measured mRNA species, perhaps including use of a reference set of data. Gene expression values are 
applied in an MRS classification system using a so-called risk score model of the gene, introduced in the EarlyR 
prognostic  signature27. This topic is discussed below and in greater detail in Supplementary Methods S1.

Gene risk scores for classification. A risk score for a gene g in a patient cohort P is defined from the distribution 
of the gene’s expression values in P using the statistical method of mixture  modeling28–30. In its simplest form, 
a mixture model of a gene with bimodal expression in P partitions the expression values into the two modes, a 
high component and a low component. In this case, a risk score for g would be near 0 for most samples in one 
mode, say the low component, and near 1 for most samples in the high component, and rising steeply from 0 
to 1 near the threshold between the low and high components. A risk score is created using bootstrap resam-
pling and differs from a binary variable by representing potential uncertainty in the value of the threshold. This 
methodology can also be applied to genes that are not bimodal but whose expression values have a somewhat 
irregular distribution, presenting several possible boundary points between high and low components. In this 
case, a risk score model of the gene could be defined around any boundary between the possible high and low 
components. Depending on the desired application, a risk score may be alternatively defined to be near 1 for the 
low component instead of the high component. In either case, the graph of a risk score is S-shaped or the mirror 
image of such.

In this study, risk scores were used to build scores predictive for subtypes. For a well-defined subtype X in a 
cohort P, there are typically genes that are significantly differentially expressed between the samples in and out of 
X. A risk score of a differentially expressed gene is a representation of the probability that a sample is in X based 
on the gene’s expression values. As such, a risk score is a single-gene predictive score for X.

For cohorts of patients P and Q that contain similar patient populations, the distributions of the expression 
values of a gene g in P and Q would be comparable. Similarly, we define risk scores in P and Q to be equivalent if 
they are models of the same gene and have comparable distributions (detailed in Supplementary Methods S1.1).

Multigene risk score (MRS) score to measure the probability of membership in a target subtype. We first identify 
genes g1,…,gn whose risk scores r1,…,rn are individually predictive of membership in a subtype X of a cohort P. 
The consensus prediction of membership in X by these risk scores can be represented initially by r = the mean 
of the risk scores; i.e., for a sample v in P, the value of r is the mean of the values of r1,…,rn at v. The MRS score, 
defined as follows, better represents the probability that a sample is in the subtype. Assuming that P is a train-
ing set in which membership in the subtype X is known, define p = MRS score derived from r1,…,rn in P so that 
for a sample v in P, the value of p at v is the positive predictive value of r at v; i.e., for V the samples in P with r 
value at least r(v), p(v) is the number of samples in both X and V, divided by the number of samples in V. Using 
a mathematical smoothing method, we can require that the MRS score is non-decreasing and a smooth curve.

An MRS score can be extended to other cohorts, e.g., a validation set, using data from the training set as a 
reference set of lookup tables. For example, to find the value of a risk score for a gene g and new sample x, we 
find the sample y in the training set whose expression value of g is closest to that of x, and define the risk score 
value of x to be that of y in the training set. The MRS score value for a new sample can be defined from means 
of risk score values by the same method.

Assignment of subtypes using a set of MRS scores. In this study, we defined an MRS score for each of the CMS 
subtypes. Using these, we classified a sample into the subtype whose MRS score value was above a classification 
threshold (Supplementary S1.2) and maximal among such scores. If no score of the sample was above the score’s 
classification threshold, the sample was unclassified.

CMSclassifier, CMScaller and CRCassigner subtyping methods. Multiple subtyping systems 
were generated for comparison with ColoType. The CMSclassifier R  package7, obtained from Synapse Project 
2623706, was applied with the SSP (single sample predictor) method. The CMScaller R  package16 (https ://githu 
b.com/peter awe/CMSca ller) was applied with the CMS template. CRCassigner subtyping was accomplished by 
applying the partitioning around medoids (PAM) methodology to the published table of 786 gene  centroids6.

https://github.com/peterawe/CMScaller
https://github.com/peterawe/CMScaller
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Statistical methods. All statistical analyses were performed using R (https ://www.r-proje ct.org) version 
3.6.2 and Bioconductor packages (https ://bioco nduct or.org). The package mclust28,29 was used for fitting mixture 
models.

The ability of a continuous score to predict membership in a subtype was assessed with the receiver operator 
characteristic (ROC) curve which plots sensitivity (y-axis) by 1—specificity (x-axis) for all values of the score. 
The ROC curve is a test of how the accuracy of classification varies with values of the continuous score. The area 
under the ROC curve (AUC) gives a numerical measure of a score’s predictive significance. The quality of the 
prediction is better than random if AUC is > 0.5 and improves as AUC increases up to 1. The plotROC R package 
was used for these  computations31.

ColoType defined a discrete classification that predicted the four subtypes of the CRCSC CMS classifica-
tion. The quality of the prediction was assessed using the overall accuracy, along with the sensitivity, specificity 
and Cohen’s Kappa statistic. These statistics were computed using the confusionMatrix function of the caret R 
 package32.

ethical approval and informed consent. The Marshfield cohort was created with the approval of the 
Marshfield Clinic Institutional Review Board (protocol number CAR60214). The IRB approved a waiver of 
informed consent because the research presented no more than minimal risk to study participants and the 
waiver of informed consent would not adversely affect the rights or welfare of participants. The protocol for this 
project was also approved by the IRB committees of the University of Notre Dame and Indiana University School 
of Medicine. All research was performed in accordance with relevant guidelines and regulations.

Results
Discovery of the continuous colotype cMS subtyping scores. For each of CRCSC CMS1–4 we 
developed a continuous score that predicted membership in the subtype following the MRS score methodol-
ogy (“Methods”). Here, we describe the process for CMS1; the process was identical for the other subtypes. The 
first step was to identify the panel of genes and their risk scores from which the predictive score was derived. To 
help reduce the potential bias due to a particular assay technology or tissue source we evaluated a gene’s predic-
tive significance simultaneously in the training sets of Cohort A, B, and C, as they represent distinct analytical 
platforms. This was organized using triplets of risk scores  (rA,  rB,  rC) so that each member of the triplet was a 
risk score of the same gene in Cohort A, B, C training sets, respectively, and the three risk scores were pairwise 
equivalent (“Methods”). We ranked all such triplets (representing 7,522 genes) by a consensus measure of sig-
nificance in the three training cohorts as follows.

For each risk score in the Cohort A training set that was a member of such a triplet, we used a linear model 
to evaluate the significance of the risk score as a predictor of CRCSC CMS1 membership (using CMS-final as 
covariate and the risk score as response variable), and ranked all such risk scores in Cohort A training set by 
p-values of the linear models. We also ranked the other risk scores in the triplets by significance in the training 
sets of Cohort B and Cohort C, respectively. Finally, for each triplet, we computed the mean of the ranks of the 
three component risk scores, and ranked all of the triplets by these mean values, lowest to highest. This resulted 
in a ranked list of genes and triplets of the genes’ risk scores in the three training sets.

Candidates for the score to predict CMS1 in each training set were generated by MRS methodology using 
varying numbers of genes and evaluated by ROC analysis. Specifically, from the highest ranked 5, 7, 10, 15 and 
20 triplets, and the risk scores for Cohort A training set from these triplets, we generated MRS scores for Cohort 
A training sets. The AUC values in Cohort A training set for MRS scores generated by 5, 7, 10, 15 and 20 risk 
scores were 0.95, 0.96, 0.98, 0.98, 0.98, respectively. We similarly generated scores for Cohort B and Cohort C 
training sets from the same highest ranked 5, 7, 10, 15 and 20 triplets. The AUC values of the corresponding 
scores in the Cohort B training set were 0.88, 0.89, 0.91, 0.95, 0.97, and for the Cohort C training set they were 
0.97, 0.97, 0.98, 0.98, 0.98. Inspecting these results, we selected the 10-gene panel as the smallest one with the 
AUC values above 0.90 in the three cohorts.

The above method was repeated to identify optimal scores for CMS2, CMS3 and CMS4, all of which used 10 
genes. The resulting score for CMS1 was defined to be the ColoType CMS1-score, similarly, for the other subtypes. 
See Supplementary Table S1 for a list of the 40 genes.

Validation of the continuous colotype cMS scores. The ColoType CMS1-score was extended to all 
samples in Cohort A using the score in the Cohort A training set as a reference set (“Methods”), and similarly 
for other subtypes and cohorts. The significance of the scores as predictors of the CRCSC CMS subtypes in the 
validation sets were assessed with ROC plots and AUC values (Fig. 1 for Cohort A validation set, Supplementary 
Fig. S1 for Cohort B validation set and Supplementary Fig. S2 for Cohort C validation set). As the figures show, 
the AUC values for all subtypes and cohort validation sets were greater than or equal to 0.91.

Assignment of the discrete colotype cMS subtypes. Assignment of CMS subtypes using the Colo-
Type scores followed MRS methodology (Supplementary Methods S1.5). The first step was to identify a clas-
sification threshold for each ColoType CMS score and each cohort as follows. A threshold of a continuous score 
predicting a subtype gives rise to a binary predictor by separating samples above or below the threshold. This 
associates to any potential threshold of the score a sensitivity, specificity and Youden index (sensitivity + specific-
ity − 1) of subtype prediction. For CMS1 in Cohort A, e.g., we selected as the classification threshold the value of 
the CMS1-score that maximized the Youden index in the Cohort A training set among possible thresholds of the 
score  value33. Classification thresholds were identified separately for each CMS score and each cohort (Table 3.)

https://www.r-project.org
https://bioconductor.org
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Figure 1.  Receiver operator characteristic (ROC) curves are plotted for ColoType CMS1-score, CMS2-score, 
CMS3-score, and CMS4-score, for samples in the Cohort A validation set (n = 1,205). Area under the curve 
(AUC) values are displayed on the panels.

Table 3.  Classification thresholds for ColoType CMS scores in each cohort. a Classification thresholds for these 
cohorts were selected in reference to Cohort C with size-factor normalized gene expression.

CMS1-score CMS2-score CMS3-score CMS4-score

Cohort A 0.751 0.792 0.663 0.684

Cohort B 0.450 0.760 0.447 0.612

Cohort C, log2 TPM normalized 0.790 0.698 0.564 0.767

Cohort C, size-factor normalized 0.630 0.613 0.632 0.613

Marshfield, whole-genomea 0.630 0.613 0.632 0.613

Marshfield,  AmpliSeqa 0.630 0.613 0.632 0.613
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Following identification of the classification thresholds, a sample in Cohort A was classified into the CMS 
subtype whose associated score was above the classification threshold and maximal among such scores; if no 
score was above the classification threshold the sample was unclassified. Samples in Cohort B and Cohort C were 
similarly classified using the corresponding ColoType scores and classification thresholds (Table 3).

Measurement of the agreement between colotype cMS subtypes and cRcSc subtypes. The 
degree of agreement between ColoType CMS subtypes and CRCSC subtypes in the combined validation sets 
from Cohorts A, B and C was assessed by confusion matrix (Table 4, n = 1,744, accuracy 0.90 95% CI 0.88–0.92, 
Kappa = 0.86). The samples unclassified by ColoType (16%) or the CRCSC classifier (14%) were excluded from 
calculation of the statistics. The levels of significance of the cohort-specific predictions of CRCSC subtypes by 
ColoType subtypes were: accuracy 0.90 95% CI 0.88–0.92, Kappa = 0.86, for Cohort A validation set, accuracy 
0.91 95% CI 0.87–0.95, Kappa = 0.87 in Cohort B validation set, and 0.88 95% CI 0.82–0.93, Kappa = 0.83 in 
Cohort C validation set. ColoType scores and classifications for all samples in Cohorts A, B, C, along with the 
classification thresholds, are reported in Supplementary Table S2.

comparison of multiple cMS subtyping methods using size factor normalized data in cohort 
c. Subsequent assignment of CMS subtypes for the Marshfield cohort used size factor normalized gene expres-
sion data. We first used Cohort C to test for possible distortion of subtyping methods due to using size factor nor-
malized data. Subtypes were generated using CMSclassifier and CMScaller in Cohort C with log2 size factor nor-
malized expression values as described in Methods (Supplementary Fig. S3). The resulting classifications agreed 
with CMS-final with accuracies 0.90 95% CI 0.86–0.93 (CMSclassifier) and 0.91 95% CI 0.87–0.94 (CMScaller) 
and Kappa 0.86 (CMSclassifier) and 0.87 (CMScaller). We also computed ColoType for Cohort C with size factor 
normalized data as follows. We identified risk scores for panel genes equivalent to those used above, which were 
based on log2 TPM expression values. We then derived scores, classification thresholds (Table 3) and subtypes 
based on size factor normalized data in Cohort C, as done above with log2 TPM expression values. The resulting 
subtypes agreed with CMS-final with accuracy 0.89 95% CI 0.85–0.92 and Kappa = 0.85. These multiple classifi-
cations showed widespread agreement with CRCSC subtypes (Supplementary Fig. S3), verifying that size factor 
normalization did not bias these classifiers.

Assignment of CMS subtypes for Marshfield cohort using multiple independent methods. We 
generated CMS subtypes for samples in the Marshfield cohort by multiple additional independent methods to 
assess the efficacy of the ColoType targeted RNA-seq assay (Fig. 2). To this end, we generated whole-genome 
transcription data from mRNA extracted from Marshfield cohort FFPE samples using RNA-seq with an rRNA 
depletion library preparation (“Methods”). To best enable comparisons with classifications using targeted RNA-
sequencing, gene expression values were computed with size factor normalization (“Methods”).

Classifications by CMSclassifier (SSP method) and CMScaller were generated from the log2 size factor nor-
malized expression values in the Marshfield cohort (“Methods”). For further comparison of subtyping methods, 
we also computed ColoType subtypes for Marshfield cohort with these expression values using Cohort C with 
size factor normalized expression values as a reference set. Specifically, for each panel gene we identified a risk 
score in the Marshfield cohort equivalent to the risk score of the gene in Cohort C. Then, for CMS1, we computed 
the mean of the risk scores of the 10 panel genes, for each sample, and then obtained a ColoType CMS1-score 
value for each sample by reference to the ColoType CMS1-score in Cohort C (“Methods”). Continuous scores for 
other subtypes were computed likewise. ColoType subtype classifications were computed using these continu-
ous score values and the same classification thresholds as for ColoType in Cohort C with size factor normalized 
expression data (Table 3.)

Preservation of samples with formalin can degrade some species of mRNA, leading to degenerate expression 
values. Of note, expression of each of the 40 ColoType panel genes measured by whole-genome RNA-seq in 
the Marshfield cohort had distributions comparable to those in Cohort C. As a consequence, these 40 genes are 
appropriate candidates for an implementation of ColoType by targeted RNA-seq for FFPE samples.

Table 4.  Confusion matrix of ColoType CMS predictions and CRCSC CMS subtypes (CMS-final) in the 
combined validation sets. a Statistics are reported for prediction of each CMS subtype individually; unclassified 
samples were excluded from the computation.

ColoType

CRCSC subtypes (CMS-final)

CMS1 CMS2 CMS3 CMS4 NONE

CMS1 190 1 18 19 28

CMS2 0 529 4 59 65

CMS3 6 5 183 2 25

CMS4 13 4 0 290 31

NONE 33 88 31 32 88

Statisticsa

Sensitivity 0.91 0.98 0.89 0.78

Specificity 0.99 0.92 0.99 0.98
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ColoType targeted RNA‑seq assay: development and application to the Marshfield cohort. A 
custom library containing amplicons for the 40 ColoType panel genes was designed with AmpliSeq for Illumina 
custom RNA panel reference guide (Illumina Inc.) following the standard workflow.

For each sample in the Marshfield cohort, count values were then obtained for the 40 ColoType panel genes 
by AmpliSeq (“Methods”, Fig. 2), and gene expression values were computed with size factor normalization, 
log2 transformed. From these panel gene expression values, ColoType CMS scores and subtypes were computed 
using, as a reference set, Cohort C with size factor normalized expression values, as above for whole-genome 
sequencing data.

Comparison of ColoType targeted RNA‑seq subtypes with independent classifications. Com-
parisons of CMS subtypes by ColoType targeted RNA-seq analysis with those generated with whole-genome data 
showed high degrees of agreement (Fig. 3.) Specifically, ColoType targeted RNA-seq assay predicted CMScaller 
CMS classes with accuracy 0.92 95% CI 0.80–0.98, CMSclassifier with accuracy 0.82 95% CI 0.68–0.91, and 
ColoType whole-genome assay with accuracy 0.92 95% CI 0.80–0.98.

prediction of colotype scores and subtype for a single new sample using a reference set. To 
be suitable for clinical use, a diagnostic test must be able to report results for a single new sample. For Colo-
Type, a single-sample classifier can be defined in the context of any normalized gene expression measurement 
technology using a corresponding large reference set of samples (Supplementary Methods S1.5). For example, 
assume we have established a large reference set R of samples in which size-factor normalized expression values 
have been obtained for all ColoType panel genes using the AmpliSeq targeted RNA-seq library. Also assume that 
ColoType CMS score values and all the underlying risk scores have been computed for samples in R. Given a new 
sample s, the ColoType scores and subtype for s could be computed, as follows.

1. Obtain for s the size-factor normalized expression values for ColoType panel genes using the AmpliSeq 
targeted RNA-seq library;

2. For each panel gene g, identify a sample y in R whose expression value for g is closest to that of s; then associ-
ate to s the value of g’s risk score for y;

Figure 2.  Multiple independent analyses were performed on the Marshfield cohort samples to assess the 
accuracy of subtyping by ColoType targeted RNA-seq analysis. Count data were generated by whole genome 
RNA-seq and by targeted RNA-seq with the ColoType custom AmpliSeq library. Gene expression values were 
computed from both sets of count data by size factor normalization, log2 transformed. ColoType was applied to 
expression data by AmpliSeq, and three independent classifiers were applied to whole-genome data. Results of 
the four subtype systems were compared.
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3. For each CMS subtype, and the 10 ColoType panel genes representing this subtype, compute the mean of 
the corresponding risk score values for s that were obtained in step 2;

4. For each CMS subtype, e.g., CMS1, identify a sample z in R whose mean risk score value is closest to that 
obtained for s in step 3; then associate to s the CMS1-score value of z;

5. Compute the ColoType CMS subtype of s from the CMS score values using the classification thresholds 
established for R.

prediction of cRcassigner subtypes using colotype scores and subtypes. One of the CRC sub-
typing systems that contributed to the definition of CMS was  CRCassigner6. CRCassigner partitions tumors into 
the Inflammatory, Enterocyte, TA, Goblet-like and Stem-like subtypes. Because this system has received signifi-
cant further  development34, we studied the ability to represent CRCassigner subtypes with ColoType scores and 
subtypes, beginning in Cohort A training set.

Figure 3.  For each sample in the Marshfield cohort, the CMS classification is displayed for ColoType by 
targeted RNA-sequencing (AmpliSeq), and the classification methods CMScaller, CMSclassifier and ColoType 
by whole-genome data with size factor normalized expression values.
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Using the published PAM algorithm (“Methods”), we computed the CRCassigner subtypes for Cohort A and 
compared these classifications with ColoType subtypes in the Cohort A training set (Supplementary Table S3). 
We found that TA was a subset of CMS2, and Enterocyte had large overlap with CMS2 but almost 50% of the 
subtype’s samples were in other CMS subtypes. Predominantly, CMS4 consisted of Stem-like and Enterocyte 
samples, CMS3 consisted of Goblet-like and Enterocyte, and CMS1 samples were largely Inflammatory, with a 
minority of Goblet-like and Enterocyte samples. Moreover, the ColoType scores predicted CRCassigner subtypes 
in the Cohort A training set with the following AUC values: 0.94 for CMS1-score prediction of Inflammatory, 0.90 
for CMS2-score prediction of TA, 0.53 for CMS2-score prediction of Enterocyte, 0.93 for CMS3-score predic-
tion of Goblet-like, 0.93 for CMS4-score prediction of Stem-like. Guided by these relationships, we developed 
a system for prediction of CRCassigner subtypes using ColoType scores and a single additional score to predict 
the Enterocyte subtype.

Using the MRS score methodology in the Cohort A training set, we derived a continuous score (Enterocyte-
score) to predict the Enterocyte subtype using the two genes CA1 and CA2 (AUC = 0.96 in Cohort A training set). 
Turning to other subtypes, recall that Stem-like was predicted by CMS4-score alone with AUC 0.93 in Cohort 
A training set. However, 17% of CMS4 in this cohort were Enterocyte samples. To better isolate Stem-like, we 
defined Stem-like-score to be CMS4-score minus Enterocyte-score; i.e., the score for sample s is the CMS4-
score(s)–Enterocyte-score(s). This Stem-like-score predicted the Stem-like subtype with AUC 0.94 in Cohort A 
training. TA was approximated by CMS2-score, however the CMS2 subtype in Cohort A training also included 
significant numbers of Enterocyte and Stem-like samples. Accordingly, we defined the TA-score to be CMS2-
score minus Enterocyte-score minus CMS4-score, which predicted TA in Cohort A training with AUC 0.94. We 
defined Inflammatory-score to be CMS1-score and Goblet-like-score to be CMS3-score because altering with other 
scores did not increase the AUC values. The predictive significance of these five CRCassigner subtype scores 
were assessed in Cohort A validation set by ROC analysis (Fig. 4); all scores reported AUC values at least 0.93.

A discrete classification algorithm based on the ColoType CMS subtypes, Enterocyte-score and CMS4-score 
was derived in Cohort A training set (Supplementary Fig. S4). Score thresholds in the algorithm were selected to 
achieve greatest classification accuracy in the training set. This algorithm yielded accuracy 0.83 95% CI 0.81–0.85 
and Kappa 0.79 in Cohort A validation set. The important Stem-like subset was predicted with accuracy 0.92 
95% CI 0.91–0.94, Kappa = 0.79.

Identification of samples with mixed subtypes using ColoType subtyping scores. Each of the 
four ColoType subtyping scores was defined as an independent predictor of the corresponding CMS subtype. 
The classification threshold for CMS1-score, e.g., was defined so that only samples with CMS1-score above the 
threshold, subsequently denoted CMS1+, could reasonably be classified into CMS1. Let CMS1- denote the sam-
ples with CMS1-score below the classification threshold, and similarly for other subtypes. We consider a tumor 
to have mixed type if it is positive for multiple CMS scores. We found that 21% of Cohort A were of mixed type, 
while 66% were positive for a single type and 13% were unclassified. The distributions of mixed types in Cohort 
A (Supplementary Table S4) showed that samples with mixed type CMS2+ and CMS4+ were most frequent 
(8.8%), followed by CMS1+ and CMS4+ (6.6%), CMS1+ and CMS3+ (3.5%), CMS2+ and CMS3+ (1.5%), and 
others containing fewer than 1% of samples. Note that almost no samples were in CMS1+ and CMS2+ or CMS3+ 
and CMS4+.

Samples of mixed types may give insight into discordant classifications by multiple classifiers. For samples 
that were positive for a single type in the Cohort A validation set, ColoType predicted the CRCSC CMS subtype 
with accuracy 0.96 95% CI 0.95–0.98, Kappa = 0.95. In contrast, for samples of mixed types, the accuracy was 
only 0.72 (95% CI 0.65–0.77), Kappa = 0.58. Apparently, a sample of mixed type exhibits features of both positive 
subtypes, and different classifiers may reasonably predict either subtype. Reporting the continuous score values 
for all subtypes is a more complete description of the tumor.

Discussion
Patient treatment for colorectal cancer today is largely determined by tumor stage. To enable better outcomes, 
patients need to be stratified in a manner that takes into account the molecular heterogeneity of the disease. The 
consensus molecular subtypes effectively stratify CRC tumors by tumor biology, however the lack of a commercial 
assay for subtyping has made clinical applications impossible. As a step towards filling this gap, we developed 
the 40-gene ColoType assay for CMS subtyping that can be implemented with targeted RNA-sequencing of 
FFPE tissue.

We showed (Supplementary Fig. S3, Fig. 3) that when using size factor normalized expression values, Colo-
Type, CMScaller and CMSclassifier produced highly correlated subtypes in multiple datasets, independent of 
whole-genome RNA-seq library preparation [selection by poly(A) tail or rRNA depletion] or tissue source (frozen 
or FFPE). In addition, the subtypes produced by these systems largely agreed with the gold-standard ones in 
TCGA-COAD (Cohort C). These results show that whole-genome RNA-seq can be the basis for studying CMS 
subtypes using frozen or FFPE tissues if size factor normalization is used to measure gene expression. Moreover, 
the CMS subtypes produced by whole-genome sequencing had significant agreement with those obtained with 
ColoType by targeted RNA-seq in the Marshfield cohort, supporting ColoType and RNA-seq as bases for CMS 
subtyping in both research and clinical settings.

Targeted RNA-seq is increasingly being used for clinical  diagnostics25,35,36. For solutions requiring, say 25 to 
a few hundred genes, the cost of a sample’s library preparation is at least comparable to the cost of materials for 
other technologies. Moreover, when targeting comparatively few genes (< 100), it is possible to sequence many 
samples in one run, allowing for overall cost-effective sample analysis, with turn-around times that meet clinical 
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expectations. The increasing prevalence of next-generation sequencing instrumentation in clinical pathology 
laboratories further supports the choice of this technology for a commercial clinical solution.

Research following the derivation of the CMS subtypes suggested that classification of a tumor into a single 
subtype may be inappropriate due to intratumoral  heterogeneity37–40. Rather than classifying a tumor into a 
single subtype, it may be more accurate to measure the concentration of a particular cell type throughout a 
tumor. To this end, ColoType was designed to report a continuous measurement of the prevalence of each 

Figure 4.  ROC curves are plotted in the Cohort A validation set (n = 1,205) for the scores developed herein to 
predict CRCassigner subtypes. The Enterocyte-score was derived from risk scores for genes CA1 and CA2. The 
other scores were derived from the ColoType CMS scores and the Enterocyte-score.
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CMS subtype using mRNA harvested throughout the tumor sample. ColoType reports a single subtype that has 
greatest prevalence, when such exists, but we envision that ColoType will report continuous score values for all 
subtypes for completeness.

Significant intratumoral heterogeneity may be a source of samples with mixed types. One instance of hetero-
geneity is the observation that cells of a mesenchymal type (CMS4) are more often found at the invasive front 
than the core of the  tumor39. This is consistent with the observation that mixed types involving CMS4+ were 
most common in Cohort A. Also note that CMS4 subtypes do not appear to occur as precancerous  lesions41. 
Additional research is required to analyze the degree to which tumors of mixed type have biological features 
characteristic of the component subtypes, and how they arise in the span of a patient’s disease.

Clinical application of ColoType will require establishing analytic validity of a targeted RNA-seq implemen-
tation in a CLIA certified pathology laboratory. Additional studies are also needed to verify the clinical utility 
of ColoType. The ability of CMS subtyping to predict response to specific drugs has been reported, however 
subtypes were defined using in-house solutions in some of these studies. These results need to be calibrated to 
the ColoType scores for optimal clinical application. It is possible that the greatest predictive significance results 
from score thresholds other than the classification thresholds; in other words, the continuous scores may be more 
significantly predictive of drug response than the subtypes themselves.

In summary, we developed the 40-gene ColoType signature for CMS subtyping CRC tumors using whole-
genome assays or targeted RNA-seq of frozen or FFPE tissues. The resulting subtypes correlated highly with those 
reported by multiple independent subtype systems. Since some CRC tumors exhibit intratumoral heterogeneity, 
ColoType’s emphasis on continuous scores likely provides a more accurate description of tumor biology than 
classification into a single subtype. The planned analytic validation of the ColoType targeted RNA-seq assay will 
enable accurate and reproducible CMS subtype analysis for clinical applications.

 Data availability
Gene expression values for samples in Cohorts A, B and C can be obtained as described in Methods. ColoType 
score values and classifications for samples in Cohorts A, B and C are available in Supplementary Table S2. 
Whole-genome RNA-sequencing data for samples in the Marshfield Cohort are available through NCBI Gene 
Expression Omnibus as accession number GSE152430.
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