119 research outputs found

    Variation in ligand responses of the bitter taste receptors TAS2R1 and TAS2R4 among New World monkeys.

    Get PDF
    BACKGROUND: New World monkeys (NWMs) are unique in that they exhibit remarkable interspecific variation in color vision and feeding behavior, making them an excellent model for studying sensory ecology. However, it is largely unknown whether non-visual senses co-vary with feeding ecology, especially gustation, which is expected to be indispensable in food selection. Bitter taste, which is mediated by bitter taste receptors (TAS2Rs) in the tongue, helps organisms avoid ingesting potentially toxic substances in food. In this study, we compared the ligand sensitivities of the TAS2Rs of five species of NWMs by heterologous expression in HEK293T cells and calcium imaging. RESULTS: We found that TAS2R1 and TAS2R4 orthologs differ in sensitivity among the NWM species for colchicine and camphor, respectively. We then reconstructed the ancestral receptors of NWM TAS2R1 and TAS2R4, measured the evolutionary shift in ligand sensitivity, and identified the amino acid replacement at residue 62 as responsible for the high sensitivity of marmoset TAS2R4 to colchicine. CONCLUSIONS: Our results provide a basis for understanding the differences in feeding ecology among NWMs with respect to bitter taste

    Differential impact of severe drought on infant mortality in two sympatric neotropical primates

    Get PDF
    Extreme climate events can have important consequences for the dynamics of natural populations, and severe droughts are predicted to become more common and intense due to climate change. We analysed infant mortality in relation to drought in two primate species (white-faced capuchins, Cebus capucinus imitator, and Geoffroy's spider monkeys, Ateles geoffroyi) in a tropical dry forest in northwestern Costa Rica. Our survival analyses combine several rare and valuable long-term datasets, including long-term primate life-history, landscape-scale fruit abundance, food-tree mortality, and climate conditions. Infant capuchins showed a threshold mortality response to drought, with exceptionally high mortality during a period of intense drought, but not during periods of moderate water shortage. By contrast, spider monkey females stopped reproducing during severe drought, and the mortality of infant spider monkeys peaked later during a period of low fruit abundance and high food-tree mortality linked to the drought. These divergent patterns implicate differing physiology, behaviour or associated factors in shaping species-specific drought responses. Our findings link predictions about the Earth's changing climate to environmental influences on primate mortality risk and thereby improve our understanding of how the increasing severity and frequency of droughts will affect the dynamics and conservation of wild primates

    Murine and related chapparvoviruses are nephro-tropic and produce novel accessory proteins in infected kidneys.

    Get PDF
    Mouse kidney parvovirus (MKPV) is a member of the provisional genus Chapparvovirus that causes renal disease in immune-compromised mice, with a disease course reminiscent of polyomavirus-associated nephropathy in immune-suppressed kidney transplant patients. Here we map four major MKPV transcripts, created by alternative splicing, to a common initiator region, and use mass spectrometry to identify "p10" and "p15" as novel chapparvovirus accessory proteins produced in MKPV-infected kidneys. p15 and the splicing-dependent putative accessory protein NS2 are conserved in all near-complete amniote chapparvovirus genomes currently available (from mammals, birds and a reptile). In contrast, p10 may be encoded only by viruses with >60% amino acid identity to MKPV. We show that MKPV is kidney-tropic and that the bat chapparvovirus DrPV-1 and a non-human primate chapparvovirus, CKPV, are also found in the kidneys of their hosts. We propose, therefore, that many mammal chapparvoviruses are likely to be nephrotropic

    Age-Related Differences in Ocular Features of a Naturalistic Free-Ranging Population of Rhesus Macaques

    Get PDF
    This is the final version. Available on open access from the Association for Research in Vision and Ophthalmology via the DOI in this recordPURPOSE: Rhesus macaques (Macaca mulatta) are the premier nonhuman primate model for studying human health and disease. We investigated if age was associated with clinically relevant ocular features in a large cohort of free-ranging rhesus macaques from Cayo Santiago, Puerto Rico. METHODS: We evaluated 120 rhesus macaques (73 males, 47 females) from 0 to 29 years old (mean ± SD: 12.6 ± 6.4) from September to December 2021. The ophthalmic evaluation included intraocular pressure (IOP) assessment, corneal pachymetry, biomicroscopy, A-scan biometry, automated refraction, and fundus photography after pupil dilation. The associations of age with the outcomes were investigated through multilevel mixed-effects models adjusted for sex and weight. RESULTS: On average, IOP, pachymetry, axial length, and automated refraction spherical equivalent were 18.37 ± 4.68 mmHg, 474.43 ± 32.21 µm, 19.49 ± 1.24 mm, and 0.30 ± 1.70 diopters (D), respectively. Age was significantly associated with pachymetry (β coefficient = -1.20; 95% confidence interval [CI], -2.27 to -0.14; P = 0.026), axial length (β coefficient = 0.03; 95% CI, 0.01 to 0.05; P = 0.002), and spherical equivalent (β coefficient = -0.12; 95% CI, -0.22 to -0.02; P = 0.015). No association was detected between age and IOP. The prevalence of cataracts in either eye was 10.83% (95% CI, 6.34-17.89) and was significantly associated with age (odds ratio [OR] = 1.20; 95% CI, 1.06-1.36; P = 0.004). Retinal drusen in either eye was observed in 15.00% (95% CI, 9.60-22.68) of animals, which was also significantly associated with age (OR = 1.14; 95% CI, 1.02-1.27; P = 0.020). CONCLUSIONS: Rhesus macaques exhibit age-related ocular associations similar to those observed in human aging, including decreased corneal thickness, increased axial length, myopic shift, and higher prevalence of cataract and retinal drusen.New Frontiers in Research FoundationNatural Sciences and Engineering Research CouncilCanada Research Chairs ProgramNational Aging InstituteBrightFocus FoundationNational Institutes of Health (NIH)University of Calgar

    Importance of Achromatic Contrast in Short-Range Fruit Foraging of Primates

    Get PDF
    Trichromatic primates have a ‘red-green’ chromatic channel in addition to luminance and ‘blue-yellow’ channels. It has been argued that the red-green channel evolved in primates as an adaptation for detecting reddish or yellowish objects, such as ripe fruits, against a background of foliage. However, foraging advantages to trichromatic primates remain unverified by behavioral observation of primates in their natural habitats. New World monkeys (platyrrhines) are an excellent model for this evaluation because of the highly polymorphic nature of their color vision due to allelic variation of the L-M opsin gene on the X chromosome. In this study we carried out field observations of a group of wild, frugivorous black-handed spider monkeys (Ateles geoffroyi frontatus, Gray 1842, Platyrrhini), consisting of both dichromats (n = 12) and trichromats (n = 9) in Santa Rosa National Park, Costa Rica. We determined the color vision types of individuals in this group by genotyping their L-M opsin and measured foraging efficiency of each individual for fruits located at a grasping distance. Contrary to the predicted advantage for trichromats, there was no significant difference between dichromats and trichromats in foraging efficiency and we found that the luminance contrast was the main determinant of the variation of foraging efficiency among red-green, blue-yellow and luminance contrasts. Our results suggest that luminance contrast can serve as an important cue in short-range foraging attempts despite other sensory cues that could be available. Additionally, the advantage of red-green color vision in primates may not be as salient as previously thought and needs to be evaluated in further field observations

    Anatomy and dietary specialization influence sensory behaviour among sympatric primates

    Get PDF
    Senses form the interface between animals and environments, and provide a window into the ecology of past and present species. However, research on sensory behaviours by wild frugivores is sparse. Here, we examine fruit assessment by three sympatric primates (Alouatta palliata, Ateles geoffroyi and Cebus imitator) to test the hypothesis that dietary and sensory specialization shape foraging behaviours. Ateles and Cebus groups are comprised of dichromats and trichromats, while all Alouatta are trichomats. We use anatomical proxies to examine smell, taste and manual touch, and opsin genotyping to assess colour vision. We find that the frugivorous spider monkeys (Ateles geoffroyi) sniff fruits most often, omnivorous capuchins (Cebus imitator), the species with the highest manual dexterity, use manual touch most often, and that main olfactory bulb volume is a better predictor of sniffing behaviour than nasal turbinate surface area. We also identify an interaction between colour vision phenotype and use of other senses. Controlling for species, dichromats sniff and bite fruits more often than trichromats, and trichromats use manual touch to evaluate cryptic fruits more often than dichromats. Our findings reveal new relationships among dietary specialization, anatomical variation and foraging behaviour, and promote understanding of sensory system evolution

    Age and sex-associated variation in the multi-site microbiome of an entire social group of free-ranging rhesus macaques

    Get PDF
    Background: An individual’s microbiome changes over the course of its lifetime, especially during infancy, and again in old age. Confounding factors such as diet and healthcare make it difficult to disentangle the interactions between age, health, and microbial changes in humans. Animal models present an excellent opportunity to study age- and sex-linked variation in the microbiome, but captivity is known to influence animal microbial abundance and composition, while studies of free-ranging animals are typically limited to studies of the fecal microbiome using samples collected non-invasively. Here, we analyze a large dataset of oral, rectal, and genital swabs collected from 105 free-ranging rhesus macaques (Macaca mulatta, aged 1 month-26 years), comprising one entire social group, from the island of Cayo Santiago, Puerto Rico. We sequenced 16S V4 rRNA amplicons for all samples. Results: Infant gut microbial communities had significantly higher relative abundances of Bifidobacterium and Bacteroides and lower abundances of Ruminococcus, Fibrobacter, and Treponema compared to older age groups, consistent with a diet high in milk rather than solid foods. The genital microbiome varied widely between males and females in beta-diversity, taxonomic composition, and predicted functional profiles. Interestingly, only penile, but not vaginal, microbiomes exhibited distinct age-related changes in microbial beta-diversity, taxonomic composition, and predicted functions. Oral microbiome composition was associated with age, and was most distinctive between infants and other age classes. Conclusions: Across all three body regions, with notable exceptions in the penile microbiome, while infants were distinctly different from other age groups, microbiomes of adults were relatively invariant, even in advanced age. While vaginal microbiomes were exceptionally stable, penile microbiomes were quite variable, especially at the onset of reproductive age. Relative invariance among adults, including elderly individuals, is contrary to findings in humans and mice. We discuss potential explanations for this observation, including that age-related microbiome variation seen in humans may be related to changes in diet and lifestyle. 4_dARqKdohA9mAZyu7q9YNVideo abstrac

    Living on the edge: utilising lidar data to assess the importance of vegetation structure for avian diversity in fragmented woodlands and their edges

    Get PDF
    Context: In agricultural landscapes, small woodland patches can be important wildlife refuges. Their value in maintaining biodiversity may, however, be compromised by isolation, and so knowledge about the role of habitat structure is vital to understand the drivers of diversity. This study examined how avian diversity and abundance were related to habitat structure in four small woods in an agricultural landscape in eastern England. Objectives: The aims were to examine the edge effect on bird diversity and abundance, and the contributory role of vegetation structure. Specifically: what is the role of vegetation structure on edge effects, and which edge structures support the greatest bird diversity? Methods: Annual breeding bird census data for 28 species were combined with airborne lidar data in linear mixed models fitted separately at (i) the whole wood level, and (ii) for the woodland edges only. Results: Despite relatively small woodland areas (4.9–9.4 ha), bird diversity increased significantly towards the edges, being driven in part by vegetation structure. At the whole woods level, diversity was positively associated with increased vegetation above 0.5 m and especially with increasing vegetation density in the understorey layer, which was more abundant at the woodland edges. Diversity along the edges was largely driven by the density of vegetation below 4 m. Conclusions: The results demonstrate that bird diversity was maximised by a diverse vegetation structure across the wood and especially a dense understorey along the edge. These findings can assist bird conservation by guiding habitat management of remaining woodland patches
    • …
    corecore