227 research outputs found

    Extreme High-Field Superconductivity in Thin Re Films

    Get PDF
    We report the high-field superconducting properties of thin, disordered Re films via magneto-transport and tunneling density of states measurements. Films with thicknesses in the range of 9 nm to 3 nm had normal state sheet resistances of \sim0.2 kΩ\Omega to \sim1 kΩ\Omega and corresponding transition temperatures in the range of 6 K to 3 K. Tunneling spectra were consistent with those of a moderate coupling BCS superconductor. Notwithstanding these unremarkable superconducting properties, the films exhibited an extraordinarily high upper critical field. We estimate their zero-temperature Hc2H_{c2} to be more than twice the Pauli limit. Indeed, in 6 nm samples the estimated reduced critical field Hc2/TcH_{c2}/T_c\sim 5.6 T/K is among the highest reported for any elemental superconductor. Although the sheet resistances of the films were well below the quantum resistance RQ=h/4e2R_Q=h/4e^2, their Hc2H_{c2}'s approached the theoretical upper limit of a strongly disordered superconductor for which kF1k_F\ell\sim1.Comment: 12 pages, 10 figure

    p53 Regulates Cell Cycle and MicroRNAs to Promote Differentiation of Human Embryonic Stem Cells

    Get PDF
    Multiple studies show that tumor suppressor p53 is a barrier to dedifferentiation; whether this is strictly due to repression of proliferation remains a subject of debate. Here, we show that p53 plays an active role in promoting differentiation of human embryonic stem cells (hESCs) and opposing self-renewal by regulation of specific target genes and microRNAs. In contrast to mouse embryonic stem cells, p53 in hESCs is maintained at low levels in the nucleus, albeit in a deacetylated, inactive state. In response to retinoic acid, CBP/p300 acetylates p53 at lysine 373, which leads to dissociation from E3-ubiquitin ligases HDM2 and TRIM24. Stabilized p53 binds CDKN1A to establish a G1 phase of cell cycle without activation of cell death pathways. In parallel, p53 activates expression of miR-34a and miR-145, which in turn repress stem cell factors OCT4, KLF4, LIN28A, and SOX2 and prevent backsliding to pluripotency. Induction of p53 levels is a key step: RNA-interference-mediated knockdown of p53 delays differentiation, whereas depletion of negative regulators of p53 or ectopic expression of p53 yields spontaneous differentiation of hESCs, independently of retinoic acid. Ectopic expression of p53R175H, a mutated form of p53 that does not bind DNA or regulate transcription, failed to induce differentiation. These studies underscore the importance of a p53-regulated network in determining the human stem cell state

    Chondroitinase and Growth Factors Enhance Activation and Oligodendrocyte Differentiation of Endogenous Neural Precursor Cells after Spinal Cord Injury

    Get PDF
    The adult spinal cord harbours a population of multipotent neural precursor cells (NPCs) with the ability to replace oligodendrocytes. However, despite this capacity, proliferation and endogenous remyelination is severely limited after spinal cord injury (SCI). In the post-traumatic microenvironment following SCI, endogenous spinal NPCs mainly differentiate into astrocytes which could contribute to astrogliosis that exacerbate the outcomes of SCI. These findings emphasize a key role for the post-SCI niche in modulating the behaviour of spinal NPCs after SCI. We recently reported that chondroitin sulphate proteoglycans (CSPGs) in the glial scar restrict the outcomes of NPC transplantation in SCI by reducing the survival, migration and integration of engrafted NPCs within the injured spinal cord. These inhibitory effects were attenuated by administration of chondroitinase (ChABC) prior to NPC transplantation. Here, in a rat model of compressive SCI, we show that perturbing CSPGs by ChABC in combination with sustained infusion of growth factors (EGF, bFGF and PDGF-AA) optimize the activation and oligodendroglial differentiation of spinal NPCs after injury. Four days following SCI, we intrathecally delivered ChABC and/or GFs for seven days. We performed BrdU incorporation to label proliferating cells during the treatment period after SCI. This strategy increased the proliferation of spinal NPCs, reduced the generation of new astrocytes and promoted their differentiation along an oligodendroglial lineage, a prerequisite for remyelination. Furthermore, ChABC and GF treatments enhanced the response of non-neural cells by increasing the generation of new vascular endothelial cells and decreasing the number of proliferating macrophages/microglia after SCI. In conclusions, our data strongly suggest that optimization of the behaviour of endogenous spinal NPCs after SCI is critical not only to promote endogenous oligodendrocyte replacement, but also to reverse the otherwise detrimental effects of their activation into astrocytes which could negatively influence the repair process after SCI

    Antimicrobial stewardship effectiveness on rationalizing the use of last line of antibiotics in a short period with limited human resources: A single centre cohort study

    Get PDF
    Objective: Antibiotics reserve (ARs) are given as a last line of treatment when other antibiotics are no longer effective. Rising threat of antimicrobial resistance makes growing use of ARs a real problem to patient safety. A single centre interventional cohort study was conducted in order to measure impact on clinical outcomes of A-team programme with limited human resources in a short period. A-team programme started on 01. September 2017. Results: In 3 months preintervention and 3 months intervention period, from 3038 and 3156 hospitalized adult patients, 249 (59% of them were male, median age = 69 years) and 96 (51% of them were male, median age = 70 years) received parenteral ARs. Total duration of hospitalization of patients on AR was reduced from 28 to 17 days of hospitalization on 100 patient-days (OR = 1.92; 95% CI 1.83-2.01; p < 0.001) with no statistical significant difference in rehospitalisation due to infection of patients that were treated with ARs within 2 months after discharge. Despite short period of time and limited human resources, A-team restrictive interventions rationalised parenteral AR use and led to positive impact on clinical outcomes. These results could help our and other A-teams in similar situation in continuing with the programme to bring more evidence

    dp53 Restrains Ectopic Neural Stem Cell Formation in the Drosophila Brain in a Non-Apoptotic Mechanism Involving Archipelago and Cyclin E

    Get PDF
    Accumulating evidence suggests that tumor-initiating stem cells or cancer stem cells (CSCs) possibly originating from normal stem cells may be the root cause of certain malignancies. How stem cell homeostasis is impaired in tumor tissues is not well understood, although certain tumor suppressors have been implicated. In this study, we use the Drosophila neural stem cells (NSCs) called neuroblasts as a model to study this process. Loss-of-function of Numb, a key cell fate determinant with well-conserved mammalian counterparts, leads to the formation of ectopic neuroblasts and a tumor phenotype in the larval brain. Overexpression of the Drosophila tumor suppressor p53 (dp53) was able to suppress ectopic neuroblast formation caused by numb loss-of-function. This occurred in a non-apoptotic manner and was independent of Dacapo, the fly counterpart of the well-characterized mammalian p53 target p21 involved in cellular senescence. The observation that dp53 affected Edu incorporation into neuroblasts led us to test the hypothesis that dp53 acts through regulation of factors involved in cell cycle progression. Our results show that the inhibitory effect of dp53 on ectopic neuroblast formation was mediated largely through its regulation of Cyclin E (Cyc E). Overexpression of Cyc E was able to abrogate dp53′s ability to rescue numb loss-of-function phenotypes. Increasing Cyc E levels by attenuating Archipelago (Ago), a recently identified transcriptional target of dp53 and a negative regulator of Cyc E, had similar effects. Conversely, reducing Cyc E activity by overexpressing Ago blocked ectopic neuroblast formation in numb mutant. Our results reveal an intimate connection between cell cycle progression and NSC self-renewal vs. differentiation control, and indicate that p53-mediated regulation of ectopic NSC self-renewal through the Ago/Cyc E axis becomes particularly important when NSC homeostasis is perturbed as in numb loss-of-function condition. This has important clinical implications

    Control of adult neurogenesis by programmed cell death in the mammalian brain

    Full text link

    Astrocytes: biology and pathology

    Get PDF
    Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions
    corecore