1,190 research outputs found

    Theory of pixel lensing towards M31 I: the density contribution and mass of MACHOs

    Full text link
    POINT-AGAPE is an Anglo-French collaboration which is employing the Isaac Newton Telescope (INT) to conduct a pixel-lensing survey towards M31. In this paper we investigate what we can learn from pixel-lensing observables about the MACHO mass and fractional contribution in M31 and the Galaxy for the case of spherically-symmetric near-isothermal haloes. We employ detailed pixel-lensing simulations which include many of the factors which affect the observables. For a maximum MACHO halo we predict an event rate in V of up to 100 per season for M31 and 40 per season for the Galaxy. However, the Einstein radius crossing time is generally not measurable and the observed full-width half-maximum duration provides only a weak tracer of lens mass. Nonetheless, we find that the near-far asymmetry in the spatial distribution of M31 MACHOs provides significant information on their mass and density contribution. We present a likelihood estimator for measuring the fractional contribution and mass of both M31 and Galaxy MACHOs which permits an unbiased determination to be made of MACHO parameters, even from data-sets strongly contaminated by variable stars. If M31 does not have a significant population of MACHOs in the mass range 0.001-1 Solar masses strong limits will result from the first season of INT observations. Simulations based on currently favoured density and mass values indicate that, after three seasons, the M31 MACHO parameters should be constrained to within a factor four uncertainty in halo fraction and an order of magnitude uncertainty in mass (90% confidence). Interesting constraints on Galaxy MACHOs may also be possible. For a campaign lasting ten years, comparable to the lifetime of current LMC surveys, reliable estimates of MACHO parameters in both galaxies should be possible. (Abridged)Comment: 21 pages, 14 figures. Submitted to MNRA

    Characterization of a POROS\u3csup\u3eTM\u3c/sup\u3e-fumonisin B1 Affinity Column for Isolating Ceramide Synthase from Rat Liver

    Get PDF
    Fumonisin B1 is a mycotoxin produced by fungi of the genus Fusarium, common pathogens of corn and other grain plants. Toxic effects associated with fumonisin B1 include equine leukoencephalomacia, porcine pulmonary edema, rat renal carcinoma, and murine hepatocellular carcinoma. Increased risk for esophageal cancer in humans has been epidemiologically associated with consumption of corn contaminated with Fusarium, suggesting that fumonisin B1 may be involved. The biological effects of fumonisin B1 exposure result primarily from disruption of de novo sphingolipid biosynthesis via inhibition of ceramide synthase. Exposure of animals or cultured cells to fumonisin B1 results in the characteristic accumulation of sphinganine, a toxic sphingolipid intermediate, concomitant with depletion of essential complex sphingolipids. Ceramide synthase has not been purified to homogeniety and characterized. We prepared crude ceramide synthase from detergent-extracted rat liver homogenates using PEG-precipitation and cation exchange chromatography. Ceramide synthase activity was then sequestered, using fumonisin B1 covalently coupled to POROS-NH particles, and eluted selectively. The observed 119-fold enrichment in specific activity demonstrates the utility of fumonisin-POROS affinity chromatography in the purification of ceramide synthase

    Signals for Lorentz Violation in Post-Newtonian Gravity

    Get PDF
    The pure-gravity sector of the minimal Standard-Model Extension is studied in the limit of Riemann spacetime. A method is developed to extract the modified Einstein field equations in the limit of small metric fluctuations about the Minkowski vacuum, while allowing for the dynamics of the 20 independent coefficients for Lorentz violation. The linearized effective equations are solved to obtain the post-newtonian metric. The corresponding post-newtonian behavior of a perfect fluid is studied and applied to the gravitating many-body system. Illustrative examples of the methodology are provided using bumblebee models. The implications of the general theoretical results are studied for a variety of existing and proposed gravitational experiments, including lunar and satellite laser ranging, laboratory experiments with gravimeters and torsion pendula, measurements of the spin precession of orbiting gyroscopes, timing studies of signals from binary pulsars, and the classic tests involving the perihelion precession and the time delay of light. For each type of experiment considered, estimates of the attainable sensitivities are provided. Numerous effects of local Lorentz violation can be studied in existing or near-future experiments at sensitivities ranging from parts in 10^4 down to parts in 10^{15}.Comment: 46 pages two-column REVTeX, accepted in Physical Review

    Individual scatterers as microscopic origin of equilibration between spin- polarized edge channels in the quantum Hall regime

    Full text link
    The equilibration length between spin-polarized edge states in the Quantum Hall regime is measured as a function of a gate voltage applied to an electrode on top of the edge channels. Reproducible fluctuations in the coupling are observed and interpreted as a mesoscopic fingerprint of single spin-flip scatterers which are turned on and off. A model to analyze macroscopic edge state coupling in terms of individual scatterers is developed, and characteristic values for these scatterers in our samples are extracted. For all samples investigated, the distance between spin-flip scatterers lies between the Drude and the quantum scattering length.Comment: 4 pages, 2 figure

    CLASH-VLT: A Highly Precise Strong Lensing Model of the Galaxy Cluster RXC J2248.7-4431 (Abell S1063) and Prospects for Cosmography

    Get PDF
    We perform a comprehensive study of the total mass distribution of the galaxy cluster RXCJ2248 (z=0.348z=0.348) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models where we use different samples of multiple image families, parametrizations of the mass distribution and cosmological parameters. As input information for the strong lensing models, we use the CLASH HST imaging data and spectroscopic follow-up observations, carried out with the VIMOS and MUSE spectrographs, to identify bona-fide multiple images. A total of 16 background sources, over the redshift range 1.06.11.0-6.1, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to 10 individual sources. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. We show that with a careful selection of a sample of spectroscopically confirmed multiple images, the best-fit model reproduces their observed positions with a rms of 0.30.3 in a fixed flat Λ\LambdaCDM cosmology, whereas the lack of spectroscopic information lead to biases in the values of the model parameters. Allowing cosmological parameters to vary together with the cluster parameters, we find (at 68%68\% confidence level) Ωm=0.250.16+0.13\Omega_m=0.25^{+0.13}_{-0.16} and w=1.070.42+0.16w=-1.07^{+0.16}_{-0.42} for a flat Λ\LambdaCDM model, and Ωm=0.310.13+0.12\Omega_m=0.31^{+0.12}_{-0.13} and ΩΛ=0.380.27+0.38\Omega_\Lambda=0.38^{+0.38}_{-0.27} for a universe with w=1w=-1 and free curvature. Using toy models mimicking the overall configuration of RXCJ2248, we estimate the impact of the line of sight mass structure on the positional rms to be 0.3±0.10.3\pm 0.1.(ABRIDGED)Comment: 23 pages, 13 figures, accepted for publication in A&

    Lines, Circles, Planes and Spheres

    Full text link
    Let SS be a set of nn points in R3\mathbb{R}^3, no three collinear and not all coplanar. If at most nkn-k are coplanar and nn is sufficiently large, the total number of planes determined is at least 1+k(nk2)(k2)(nk2)1 + k \binom{n-k}{2}-\binom{k}{2}(\frac{n-k}{2}). For similar conditions and sufficiently large nn, (inspired by the work of P. D. T. A. Elliott in \cite{Ell67}) we also show that the number of spheres determined by nn points is at least 1+(n13)t3orchard(n1)1+\binom{n-1}{3}-t_3^{orchard}(n-1), and this bound is best possible under its hypothesis. (By t3orchard(n)t_3^{orchard}(n), we are denoting the maximum number of three-point lines attainable by a configuration of nn points, no four collinear, in the plane, i.e., the classic Orchard Problem.) New lower bounds are also given for both lines and circles.Comment: 37 page

    The influence of anesthetics, neurotransmitters and antibiotics on the relaxation processes in lipid membranes

    Get PDF
    In the proximity of melting transitions of artificial and biological membranes fluctuations in enthalpy, area, volume and concentration are enhanced. This results in domain formation, changes of the elastic constants, changes in permeability and slowing down of relaxation processes. In this study we used pressure perturbation calorimetry to investigate the relaxation time scale after a jump into the melting transition regime of artificial lipid membranes. This time corresponds to the characteristic rate of domain growth. The studies were performed on single-component large unilamellar and multilamellar vesicle systems with and without the addition of small molecules such as general anesthetics, neurotransmitters and antibiotics. These drugs interact with membranes and affect melting points and profiles. In all systems we found that heat capacity and relaxation times are related to each other in a simple manner. The maximum relaxation time depends on the cooperativity of the heat capacity profile and decreases with a broadening of the transition. For this reason the influence of a drug on the time scale of domain formation processes can be understood on the basis of their influence on the heat capacity profile. This allows estimations of the time scale of domain formation processes in biological membranes.Comment: 12 pages, 6 figure

    Difference Image Analysis of Galactic Microlensing I. Data Analysis

    Full text link
    This is a preliminary report on the application of Difference Image Analysis (DIA) to galactic bulge images. The aim of this analysis is to increase the sensitivity to the detection of gravitational microlensing. We discuss how the DIA technique simplifies the process of discovering microlensing events by detecting only objects which have variable flux. We illustrate how the DIA technique is not limited to detection of so called ``pixel lensing'' events, but can also be used to improve photometry for classical microlensing events by removing the effects of blending. We will present a method whereby DIA can be used to reveal the true unblended colours, positions and light curves of microlensing events. We discuss the need for a technique to obtain the accurate microlensing time scales from blended sources, and present a possible solution to this problem using the existing HST colour magnitude diagrams of the galactic bulge and LMC. The use of such a solution with both classical and pixel microlensing searches is discussed. We show that one of the major causes of systematic noise in DIA is differential refraction. A technique for removing this systematic by effectively registering images to a common airmass is presented. Improvements to commonly used image differencing techniques are discussed.Comment: 18 pages, 8 figures, uses AAS LaTEX 4.0, To appear in Astrophysical Journa

    CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z=0.44 galaxy cluster MACS 1206.2-0847

    Get PDF
    We use an unprecedented data-set of about 600 redshifts for cluster members, obtained as part of a VLT/VIMOS large programme, to constrain the mass profile of the z=0.44 cluster MACS J1206.2-0847 over the radial range 0-5 Mpc (0-2.5 virial radii) using the MAMPOSSt and Caustic methods. We then add external constraints from our previous gravitational lensing analysis. We invert the Jeans equation to obtain the velocity-anisotropy profiles of cluster members. With the mass-density and velocity-anisotropy profiles we then obtain the first determination of a cluster pseudo-phase-space density profile. The kinematics and lensing determinations of the cluster mass profile are in excellent agreement. This is very well fitted by a NFW model with mass M200=(1.4 +- 0.2) 10^15 Msun and concentration c200=6 +- 1, only slightly higher than theoretical expectations. Other mass profile models also provide acceptable fits to our data, of (slightly) lower (Burkert, Hernquist, and Softened Isothermal Sphere) or comparable (Einasto) quality than NFW. The velocity anisotropy profiles of the passive and star-forming cluster members are similar, close to isotropic near the center and increasingly radial outside. Passive cluster members follow extremely well the theoretical expectations for the pseudo-phase-space density profile and the relation between the slope of the mass-density profile and the velocity anisotropy. Star-forming cluster members show marginal deviations from theoretical expectations. This is the most accurate determination of a cluster mass profile out to a radius of 5 Mpc, and the only determination of the velocity-anisotropy and pseudo-phase-space density profiles of both passive and star-forming galaxies for an individual cluster [abridged]Comment: A&A in press; 22 pages, 19 figure

    Neuroactive steroids in depression and anxiety disorders: Clinical studies

    Get PDF
    Certain neuroactive steroids modulate ligand-gated ion channels via non-genomic mechanisms. Especially 3 alpha-reduced pregnane steroids are potent positive allosteric modulators of the gamma-aminobutyric acid type A (GABA(A)) receptor. During major depression, there is a disequilibrium of 3 alpha-reduced neuroactive steroids, which is corrected by clinically effective pharmacological treatment. To investigate whether these alterations are a general principle of successful antidepressant treatment, we studied the impact of nonpharmacological treatment options on neuroactive steroid concentrations during major depression. Neither partial sleep deprivation, transcranial magnetic stimulation, nor electroconvulsive therapy affected neuroactive steroid levels irrespectively of the response to these treatments. These studies suggest that the changes in neuroactive steroid concentrations observed after antidepressant pharmacotherapy more likely reflect distinct pharmacological properties of antidepressants rather than the clinical response. In patients with panic disorder, changes in neuroactive steroid composition have been observed opposite to those seen in depression. However, during experimentally induced panic induction either with cholecystokinine-tetrapeptide or sodium lactate, there was a pronounced decline in the concentrations of 3 alpha-reduced neuroactive steroids in patients with panic disorder, which might result in a decreased GABAergic tone. In contrast, no changes in neuroactive steroid concentrations could be observed in healthy controls with the exception of 3 alpha,5 alpha-tetrahydrodeoxycorticosterone. The modulation of GABA(A) receptors by neuroactive steroids might contribute to the pathophysiology of depression and anxiety disorders and might offer new targets for the development of novel anxiolytic compounds. Copyright (c) 2006 S. Karger AG, Basel
    corecore