951 research outputs found
Genetic microheterogeneity and phenotypic variation of Helicobacter pylori arginase in clinical isolates
BACKGROUND: Clinical isolates of the gastric pathogen Helicobacter pylori display a high level of genetic macro- and microheterogeneity, featuring a panmictic, rather than clonal structure. The ability of H. pylori to survive the stomach acid is due, in part, to the arginase-urease enzyme system. Arginase (RocF) hydrolyzes L-arginine to L-ornithine and urea, and urease hydrolyzes urea to carbon dioxide and ammonium, which can neutralize acid. RESULTS: The degree of variation in arginase was explored at the DNA sequence, enzyme activity and protein expression levels. To this end, arginase activity was measured from 73 minimally-passaged clinical isolates and six laboratory-adapted strains of H. pylori. The rocF gene from 21 of the strains was cloned into genetically stable E. coli and the enzyme activities measured. Arginase activity was found to substantially vary (>100-fold) in both different H. pylori strains and in the E. coli model. Western blot analysis revealed a positive correlation between activity and amount of protein expressed in most H. pylori strains. Several H. pylori strains featured altered arginase activity upon in vitro passage. Pairwise alignments of the 21 rocF genes plus strain J99 revealed extensive microheterogeneity in the promoter region and 3' end of the rocF coding region. Amino acid S232, which was I232 in the arginase-negative clinical strain A2, was critical for arginase activity. CONCLUSION: These studies demonstrated that H. pylori arginase exhibits extensive genotypic and phenotypic variation which may be used to understand mechanisms of microheterogeneity in H. pylori
Randomised Controlled Trial to determine the appropriate time to initiate peritoneal dialysis after insertion of catheter to minimise complications (Timely PD study)
Background. The most appropriate time to initiate dialysis after surgical insertion of Tenckhoff catheters is not clear in the literature. There is the possibility of peritoneal dialysis (PD) complications such as leakage and infection if dialysis is started too soon after insertion. However, much morbidity and expense could be saved by reducing dependency on haemodialysis (HD) by earlier initiation of PD post catheter insertion. Previous studies are observational and mostly compare immediate with delayed use. The primary objective is to determine the safest and shortest time interval between surgical placement of a Tenckhoff catheter and starting PD. Methods/Design. This is a randomised controlled trial of patients who will start PD after insertion of Tenckhoff catheter at Royal Brisbane and Women's Hospital (RBWH) or Rockhampton Base Hospital (RBH) who meet the inclusion criteria. Patients will be stratified by site and diabetic status. The patients will be randomised to one of three treatment groups. Group 1 will start PD one week after Tenckhoff catheter insertion, group 2 at two weeks and group 3 at four weeks. Nurses and physicians will be blinded to the randomised allocation. The primary end point is the complication rate (leaks and infection) after initiation of PD. Discussion. The study will determine the most appropriate time to initiate PD after placement of a Tenckhoff catheter
Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration
Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy
Bioinformatics-Based Identification of Expanded Repeats: A Non-reference Intronic Pentamer Expansion in RFC1 Causes CANVAS
Genomic technologies such as next-generation sequencing (NGS) are revolutionizing molecular diagnostics and clinical medicine. However, these approaches have proven inefficient at identifying pathogenic repeat expansions. Here, we apply a collection of bioinformatics tools that can be utilized to identify either known or novel expanded repeat sequences in NGS data. We performed genetic studies of a cohort of 35 individuals from 22 families with a clinical diagnosis of cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Analysis of whole-genome sequence (WGS) data with five independent algorithms identified a recessively inherited intronic repeat expansion [(AAGGG)exp] in the gene encoding Replication Factor C1 (RFC1). This motif, not reported in the reference sequence, localized to an Alu element and replaced the reference (AAAAG)11 short tandem repeat. Genetic analyses confirmed the pathogenic expansion in 18 of 22 CANVAS-affected families and identified a core ancestral haplotype, estimated to have arisen in Europe more than twenty-five thousand years ago. WGS of the four RFC1-negative CANVAS-affected families identified plausible variants in three, with genomic re-diagnosis of SCA3, spastic ataxia of the Charlevoix-Saguenay type, and SCA45. This study identified the genetic basis of CANVAS and demonstrated that these improved bioinformatics tools increase the diagnostic utility of WGS to determine the genetic basis of a heterogeneous group of clinically overlapping neurogenetic disorders
Changes in gene expression of neo-squamous mucosa after endoscopic treatment for dysplastic Barrett’s esophagus and intramucosal adenocarcinoma
Author version made available in accordance with publisher copyright policy.Abstract
Background: Endoscopic therapy, including by radiofrequency ablation (RFA) or endoscopic mucosal resection (EMR), is first
line treatment for Barrett’s esophagus (BE) with high-grade dysplasia (HGD) or intramucosal cancer (IMC) and may be
appropriate for some patients with low-grade dysplasia (LGD).
Objective: The purpose of this study was to investigate the molecular effects of endotherapy.
Methods: mRNA expression of 16 genes significantly associated with different BE stages was measured in paired pretreatment
BE tissues and post-treatment neo-squamous biopsies from 36 patients treated by RFA (19 patients, 3 IMC, 4 HGD,
12 LGD) or EMR (17 patients, 4 IMC, 13 HGD). EMR was performed prior to RFA in eight patients. Normal squamous
esophageal tissues were from 20 control individuals.
Results: Endoscopic therapy resulted in significant change towards the normal squamous expression profile for all genes.
The neo-squamous expression profile was significantly different to the normal control profile for 11 of 16 genes.
Conclusion: Endotherapy results in marked changes in mRNA expression, with replacement of the disordered BE dysplasia
or IMC profile with a more ‘‘normal’’ profile. The neo-squamous mucosa was significantly different to the normal control
squamous mucosa for most genes. The significance of this finding is uncertain but it may support continued endoscopic
surveillance after successful endotherapy
Wdr74 Is Required for Blastocyst Formation in the Mouse
Preimplantation is a dynamic developmental period during which a combination of maternal and zygotic factors program the early embryo resulting in lineage specification and implantation. A reverse genetic RNAi screen in mouse embryos identified the WD Repeat Domain 74 gene (Wdr74) as being required for these critical first steps of mammalian development. Knockdown of Wdr74 results in embryos that develop normally until the morula stage but fail to form blastocysts or properly specify the inner cell mass and trophectoderm. In Wdr74-deficient embryos, we find activated Trp53-dependent apoptosis as well as a global reduction of RNA polymerase I, II and III transcripts. In Wdr74-deficient embryos blocking Trp53 function rescues blastocyst formation and lineage differentiation. These results indicate that Wdr74 is required for RNA transcription, processing and/or stability during preimplantation development and is an essential gene in the mouse
Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere
For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high-resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movements and offer a promising opportunity for integrating independent data sources to describe avian migration. Here, we present a three-stage modeling framework for estimating spatial patterns of avian migration. First, we integrate tracking and band re-encounter data to quantify migratory connectivity, defined as the relative proportions of individuals migrating between breeding and nonbreeding regions. Next, we use estimated connectivity proportions along with eBird occurrence probabilities to produce probabilistic least-cost path (LCP) indices. In a final step, we use generalized additive mixed models (GAMMs) both to evaluate the ability of LCP indices to accurately predict (i.e., as a covariate) observed locations derived from tracking and band re-encounter data sets versus pseudo-absence locations during migratory periods and to create a fully integrated (i.e., eBird occurrence, LCP, and tracking/band re-encounter data) spatial prediction index for mapping species-specific seasonal migrations. To illustrate this approach, we apply this framework to describe seasonal migrations of 12 bird species across the Western Hemisphere during pre- and postbreeding migratory periods (i.e., spring and fall, respectively). We found that including LCP indices with eBird occurrence in GAMMs generally improved the ability to accurately predict observed migratory locations compared to models with eBird occurrence alone. Using three performance metrics, the eBird + LCP model demonstrated equivalent or superior fit relative to the eBird-only model for 22 of 24 species–season GAMMs. In particular, the integrated index filled in spatial gaps for species with over-water movements and those that migrated over land where there were few eBird sightings and, thus, low predictive ability of eBird occurrence probabilities (e.g., Amazonian rainforest in South America). This methodology of combining individual-based seasonal movement data with temporally dynamic species distribution models provides a comprehensive approach to integrating multiple data types to describe broad-scale spatial patterns of animal movement. Further development and customization of this approach will continue to advance knowledge about the full annual cycle and conservation of migratory birds
A three arm cluster randomised controlled trial to test the effectiveness and cost-effectiveness of the SMART work & life intervention for reducing daily sitting time in office workers : study protocol
Background:Office-based workers typically spend 70-85% of working hours, and a large proportion of leisure time, sitting. High levels of sitting have been linked to poor health. There is a need for fully powered randomised controlled trials (RCTs) with long-term follow-up to test the effectiveness of interventions to reduce sitting. This paper describes the methodology of a three-arm cluster RCT designed to determine the effectiveness and cost-effectiveness of the SMART Work & Life intervention, delivered with and without a height-adjustable desk, for reducing daily sitting.
Methods/Design:A three-arm cluster RCT of 33 clusters (660 council workers) will be conducted in three areas in England (Leicester; Manchester; Liverpool). Office groups (clusters) will be randomised to the SMART Work & Life intervention delivered with (group 1) or without (group 2) a height-adjustable desk or a control group (group 3). SMART Work & Life includes organisational (e.g., management buy-in, provision/support for standing meetings), environmental (e.g., relocating waste bins, printers), and group/individual (education, action planning, goal setting, addressing barriers, coaching, self-monitoring, social support) level behaviour change strategies, with strategies driven by workplace champions. Baseline, 3, 12 and 24Â month measures will be taken. Objectively measured daily sitting time (activPAL3). objectively measured sitting, standing, stepping, prolonged sitting and moderate-to-vigorous physical activity time and number of steps at work and daily; objectively measured sleep (wrist accelerometry). Adiposity, blood pressure, fasting glucose, glycated haemoglobin, cholesterol (total, HDL, LDL) and triglycerides will be assessed from capillary blood samples. Questionnaires will examine dietary intake, fatigue, musculoskeletal issues, job performance and satisfaction, work engagement, occupational and general fatigue, stress, presenteeism, anxiety and depression and sickness absence (organisational records). Quality of life and resources used (e.g. GP visits, outpatient attendances) will also be assessed. We will conduct a full process evaluation and cost-effectiveness analysis.
Discussion:The results of this RCT will 1) help to understand how effective an important simple, yet relatively expensive environmental change is for reducing sitting, 2) provide evidence on changing behaviour across all waking hours, and 3) provide evidence for policy guidelines around population and workplace health and well-being.
Trial registration: ISRCTN11618007 . Registered on 21 January 2018
- …