26 research outputs found

    GS100-02-41: a new large HI shell in the outer part of the Galaxy

    Get PDF
    Massive stars have a profound effect on the surrounding interstellar medium. They ionize and heat the neutral gas, and due to their strong winds, they swept the gas up forming large HI shells. In this way, they generate a dense shell where the physical conditions for the formation of new stars are given. The aim of this study is to analyze the origin and evolution of the large HI shell GS100-02-41 and its role in triggering star forming processes.To characterize the shell and its environs, we carry out a multi-wavelength study. We analyze he HI 21 cm line, the radio continuum, and infrared emission distributions. The analysis of the HI data shows an expanding shell structure centred at (l, b) = (100.6 deg, -2.04 deg) in the velocity range from -29 to -51.7 km/s. We infer for GS100-02-41, a kinematical distance of 2.8 +/- 0.6 kpc. Several massive stars belonging to Cep OB1 are located in projection within the large HI, shell boundaries. The analysis of the radio continuum and infrared data reveal that there is no continuum counterpart of the HI shell. On the other hand, three slightly extended radio continuum sources are observed in projection onto the dense HI shell. From their flux density determinations we infer that they are thermal in nature. An analysis of the HI emission distribution in the environs of these sources shows, for each of them, a region of low emissivity having a good morphological correlation with the ionized gas in a velocity range similar to the one where GS100-02-41 is detected. The origin of GS100-02-41 could have been mainly due to the action of the Cep OB1 massive stars located inside the HI shell. The obtained age difference between the HI shell and the HII regions, together with their relative location, led us to conclude that the ionizing stars could have been created as a consequence of the shell evolution.Comment: Accepted for publication in A&

    Processed pseudogenes acquired somatically during cancer development.

    Get PDF
    Cancer evolves by mutation, with somatic reactivation of retrotransposons being one such mutational process. Germline retrotransposition can cause processed pseudogenes, but whether this occurs somatically has not been evaluated. Here we screen sequencing data from 660 cancer samples for somatically acquired pseudogenes. We find 42 events in 17 samples, especially non-small cell lung cancer (5/27) and colorectal cancer (2/11). Genomic features mirror those of germline LINE element retrotranspositions, with frequent target-site duplications (67%), consensus TTTTAA sites at insertion points, inverted rearrangements (21%), 5' truncation (74%) and polyA tails (88%). Transcriptional consequences include expression of pseudogenes from UTRs or introns of target genes. In addition, a somatic pseudogene that integrated into the promoter and first exon of the tumour suppressor gene, MGA, abrogated expression from that allele. Thus, formation of processed pseudogenes represents a new class of mutation occurring during cancer development, with potentially diverse functional consequences depending on genomic context

    Signatures of mutational processes in human cancer.

    Get PDF
    All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy

    Processed pseudogenes acquired somatically during cancer development

    Get PDF
    Cancer evolves by mutation, with somatic reactivation of retrotransposons being one such mutational process. Germline retrotransposition can cause processed pseudogenes, but whether this occurs somatically has not been evaluated. Here we screen sequencing data from 660 cancer samples for somatically acquired pseudogenes. We find 42 events in 17 samples, especially non-small cell lung cancer (5/27) and colorectal cancer (2/11). Genomic features mirror those of germline LINE element retrotranspositions, with frequent target-site duplications (67%), consensus TTTTAA sites at insertion points, inverted rearrangements (21%), 5′ truncation (74%) and polyA tails (88%). Transcriptional consequences include expression of pseudogenes from UTRs or introns of target genes. In addition, a somatic pseudogene that integrated into the promoter and first exon of the tumour suppressor gene, MGA, abrogated expression from that allele. Thus, formation of processed pseudogenes represents a new class of mutation occurring during cancer development, with potentially diverse functional consequences depending on genomic context

    Processed pseudogenes acquired somatically during cancer development

    Get PDF
    Cancer evolves by mutation, with somatic reactivation of retrotransposons being one such mutational process. Germline retrotransposition can cause processed pseudogenes, but whether this occurs somatically has not been evaluated. Here we screen sequencing data from 660 cancer samples for somatically acquired pseudogenes. We find 42 events in 17 samples, especially non-small cell lung cancer (5/27) and colorectal cancer (2/11). Genomic features mirror those of germline LINE element retrotranspositions, with frequent target-site duplications (67%), consensus TTTTAA sites at insertion points, inverted rearrangements (21%), 5′ truncation (74%) and polyA tails (88%). Transcriptional consequences include expression of pseudogenes from UTRs or introns of target genes. In addition, a somatic pseudogene that integrated into the promoter and first exon of the tumour suppressor gene, MGA, abrogated expression from that allele. Thus, formation of processed pseudogenes represents a new class of mutation occurring during cancer development, with potentially diverse functional consequences depending on genomic context. Germline pseudogenes have an important role in human evolution. Here, the authors analyse sequencing data from 660 cancer samples and find evidence for the formation of somatically acquired pseudogenes, a new class of mutation, which may contribute to cancer development

    Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer

    Get PDF
    Recent sequencing studies have extensively explored the somatic alterations present in the nuclear genomes of cancers. Although mitochondria control energy metabolism and apoptosis, the origins and impact of cancer-associated mutations in mtDNA are unclear. In this study, we analyzed somatic alterations in mtDNA from 1675 tumors. We identified 1907 somatic substitutions, which exhibited dramatic replicative strand bias, predominantly C > T and A > G on the mitochondrial heavy strand. This strand-asymmetric signature differs from those found in nuclear cancer genomes but matches the inferred germline process shaping primate mtDNA sequence content. A number of mtDNA mutations showed considerable heterogeneity across tumor types. Missense mutations were selectively neutral and often gradually drifted towards homoplasmy over time. In contrast, mutations resulting in protein truncation undergo negative selection and were almost exclusively heteroplasmic. Our findings indicate that the endogenous mutational mechanism has far greater impact than any other external mutagens in mitochondria and is fundamentally linked to mtDNA replication
    corecore