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Hypertension, heart failure (HF), type II diabetes melli-
tus, and chronic kidney disease represent significant and 

growing global health issues.1 The rates of control of blood 
pressure and the therapeutic efforts to prevent progression 
of HF, chronic kidney disease, diabetes mellitus, and their 
sequelae remain unsatisfactory.2–5 Although patient nonad-
herence and nonpersistence with medications participate in 
this failure, especially in asymptomatic disorders, the inher-
ent complexity of drug titration, drug interactions, and both 
the real and perceived adverse events collectively contribute 
to the failure of lifelong polypharmacy. Furthermore, therapy 
targeting the potentially unique contribution of autonomic 
imbalance is limited by the poorly tolerated systemic adverse 
effects of adrenergic blocking agents. Recent introduction of 
medical procedures, such as renal denervation,6,7 and devices 
such as deep brain stimulation,8 baroreceptor stimulation,9 and 
direct vagus nerve stimulation10 begin to address these gaps in 
selective patients.

The contribution of excessive sympathetic nerve activity 
to the development and progression of hypertension, insulin 
resistance, and HF has been demonstrated in both preclini-
cal and human experiments. Preclinical experiments in mod-
els of these diseases have successfully used sympathetic or 
parasympathetic modifications to alter the time course of 
their progression.11,12 Reduction of blood pressure after dor-
sal rhizotomy in rats with renal hypertension and reduced 
total body noradrenaline and muscle sympathetic nerve activ-
ity in humans after renal denervation confirm that the affer-
ent signals from the kidney underlie some of the excessive 
sympathetic drive seen in these states.13,14 However, additional 
afferent signals may arise from sites elsewhere in the body and 
in particular the carotid body (CB). We propose targeting the 
CB in patients with increased chemosensitivity to address the 
underlying autonomic imbalance seen in hypertension, HF, 
insulin resistance, and chronic kidney disorders.

Rationale for the CB as a Therapeutic Target for 
Sympathetic Hyperactivity Syndromes

The CB: A Peripheral Chemosensor
The CB (Figure 1), the dominant peripheral chemoreceptor 
in humans, responds primarily to acute hypoxemia, increases 
in arterial carbon dioxide tension (Pco

2
), acidotic pH, 

hypoglycemia, and hypoperfusion. The CBs are 1.5- to 7.0-mm  
ovoid bilateral organs located at the bifurcation of each 
common carotid and are innervated by the nerve fibers from the 
glossopharyngeal (carotid sinus nerve), vagal, and the sympathetic 
nerve of the nearby superior cervical ganglion. The CB is the most 
perfused organ per gram weight in the body (2000 mL/min per 
100 mg of tissue) and receives blood via an arterial branch arising 
from internal or external carotid artery. Proposed underlying 
mechanisms for hyperactivity of the chemoreceptors are local 
hypoperfusion, inflammation, and changes in ASIC/TASK (acid-
sensing ion channel/2-pore domain acid-sensing K(+) channel) 
channels, as well as the balance between carbon monoxide 
and hydrogen sulphide and the relative activity of hypoxia-
inducible transcription factor (HIF)-1α versus HIF-2α.15–18  
Stimulation of the CB drives systemic sympathetic tone through 
direct signaling to the nucleus tractus solitarius and rostral 
ventrolateral medulla oblongata resulting in an increase in 
blood pressure and minute ventilation.19 Separately, the carotid 
baroreflex originates from the carotid sinus, an outpouching of 
the internal carotid artery, and houses mechanoreceptors, which 
buffer acute changes in blood pressure through modulation 
of both parasympathetic and sympathetic nervous systems. 
Additional baroreflex input to the brain comes from numerous 
mechanoreceptors, including those found in walls of the internal, 
external, and common carotid arteries; aorta; and kidney. 
Chemoreflex and baroreflex are linked in control of sympathetic 
tone; chemoreflex mediates sympathoactivation and inhibition 
of baroreflex function.20
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Peripheral chemosensitivity is clinically assessed by mea-
suring the ventilatory response, changes of muscle sympa-
thetic nerve activity, or physiological changes in heart rate or 
blood pressure in response to either inhibition or stimulation 
of the peripheral chemoreceptor by manipulating inhaled gas 
mixtures. Transient or progressive hypoxia stimulate, whereas 
brief hyperoxia or low-dose dopamine inhibits the peripheral 
chemoreflex.21–24 Whether CB hyperactivity can occur in the 
absence of increased chemosensitivity or whether increased 
chemosensitivity is always associated with CB hyperactivity 
remains to be fully validated.

As with many of the beneficial compensatory mechanisms 
activated in acute stress, we propose that chronic hyperactiv-
ity of the defensive chemoreflex is maladaptive and leads to 
the development and progression of diseases affected through 
chronic overstimulation of the sympathetic nervous system 
and inhibition of the protective baroreflex.

Therapeutic Reduction of Chemoreceptor  
Hyperactivity to Treat Syndromes of  
Sympathetic Hyperactivity
Therapeutic reduction of hyperactive peripheral chemoreflex 
activity to reduce systemic sympathetic hyperactivity could 
favorably impact the morbidity and mortality in diseases noted 
for autonomic imbalance, including HF, chronic and end-stage 
renal disease, insulin resistance, sleep disorders, and essential 
hypertension (Figure 2). Next, we review the available data 
in hypertension and HF, which identify the potential value of 
targeting the hypersensitive chemoreflex.

Hypertension

Preclinical Data
CB hyperactivity increases central sympathetic drive and thus 
contributes to hypertension through direct increases in renal 
neurogenic sodium avidity and increases in renal secretion of 

renin, as well as neurogenically mediated increases in vascu-
lar resistance.25 The physiological significance of this has been 
explored in both preclinical and human trials.

Lesske et al26 induced hypertension in rats using 30 days 
of intermittent hypoxia. Unlike animals with intact CBs, the 
chemoreceptor-denervated animals lost their hypertensive 
response to hypoxic stimuli. In the same model of intermittent 
hypoxia, chemical denervation of the peripheral sympathetic 
synapses by 6-hydroxy dopamine or hexamethonium elimi-
nated the expected hypoxia-induced increase in blood pres-
sure, confirming that the CB initiated a sequence of neurally 
mediated events and that CB ablation is sufficient to obliterate 
this sequence.26,27

More recently, Abdala et al28 have reported that interference 
with CB signaling, by interrupting its afferent nerves, results 
in significant blood pressure reduction in both developing and 
adult spontaneously hypertensive rats but no changes of pressure 
in normotensive animals. This was reported originally in April 
2011.29,30 Interestingly, CB denervation caused an improvement 
in baroreceptor function, potentially caused by a resetting of the 
central baroreceptor control (Figure 3).28 It follows that the lat-
ter may contribute to the blood pressure–lowering effect of CB 
denervation. Given the increase in baroreceptor cardiac vagal 
gain,28 it is predicted that cardiac vagal tone and heart rate vari-
ability are enhanced, but this awaits confirmation.

Whiteis et al31 recently showed that spontaneously hyper-
tensive rats that underwent CB denervation demonstrated 
significantly lower mean blood pressure than sham-operated 
spontaneously hypertensive rats (202±2 versus 239±6 mm Hg; 
P<0.05) and prevented the development of left ventricular 
hypertrophy at 5 months postsurgery.

Inhibition of CB Activity for the Treatment  
of Hypertension in Humans
Similar to rats, human experiments have documented the rela-
tion between hypersensitive chemoreflex and abnormalities of 
blood pressure. Trzebski et al32 studied 20 subjects with mild 
hypertension versus age- and sex-matched control subjects. 
Ventilatory and blood pressure responses to hypoxia were 
greater in the hypertensive subjects. Interestingly, there was a 
significant correlation between the responses to hypoxia and 
hypercapnia in the normotensive subjects but not the hyper-
tensive subjects, suggesting a predominant role for peripheral 
but not central chemosensors in hypertension.32

Two independent studies of acute hyperoxia in young 
untreated hypertensive subjects demonstrated a marked 
reduction in systolic and diastolic blood pressures mediated 
by substantial reduction in peripheral vascular resistance.33 
The results suggest that augmented tonic drive from arterial 
chemoreceptors is one of the mechanisms responsible for the 
elevated arterial blood pressure and total peripheral resistance 
in human early essential hypertension, which is consistent 
with the spontaneously hypertensive rats.28 Similar results 
have been reported after chemoreflex inhibition with hyper-
oxia in young patients with borderline or mild hypertension 
or a family history of hypertension.34 These data suggest that 
the CB may be an early contributor to the genesis of essen-
tial hypertension. Thus, increased chemosensitivity, identified 
by enhanced hypoxic ventilatory drive, is characteristic of 
subjects with essential hypertension, in young subjects with 

IC

EC

CC

Figure 1.  Gross-anatomical appearance of the human carotid 
body (CB). The CB is ≈1.5–7.0 mm long and equivalent to the 
size of a grain of rice. CC indicates common carotid artery; EC, 
external carotid; IC, internal carotid. Modified from Khan et al.66 
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mild hypertension, and in subjects with normal blood pressure 
but with a family history of hypertension.26,34–36 In addition, 
muscle sympathetic nerve activity responses to hypoxia are 
potentiated in patients with borderline hypertension.37 This 
later result confirms the contribution of the peripheral chemo-
sensor to central sympathetic drive.

Is Surgical Removal of the CB a Treatment for 
Hypertension?
Nakayama38 documented sustained blood pressure reductions 
after CB resection, while performing a clinical series from 
1940s to 1960s. Although he did not show long-term benefit 
in ventilatory parameters in those disease states, he reported 
blood pressure findings in 29 patients in a single series: a 
reduction in systolic blood pressure from 170 mm Hg preoper-
ative to 130 mm Hg at 5 days postoperative and this reduction 

was maintained throughout the duration of the study (ie, 6 
months; Figure 4).38 Additionally, Winter and Whipp39 noted 
acute blood pressure reductions (Figure 5) after CB removal.

These results are comparable with the results of selective 
renal nerve ablation, as demonstrated in the Symplicity hyper-
tension 1 and hypertension 2 trials with an average reduction 
of −28/−10 mm Hg at 6 months,6,7 and the carotid sinus stimu-
lator experience in hypertension with an average reduction of 
−34/−20 mm Hg.9,40,41

Heart Failure
Sympathetic activation is a seminal feature of chronic HF, 
underlying both initiation and progression of the syndrome.42,43 
These elevations of sympathetic tone are linked to impairment 
of inhibitory baroreflex control of cardiovascular function.44 

CNS

Carotid
Chemoreceptors

Carotid
Baroreceptors

Arteriolar
Resistance

Heart

Hypertrophy
Arrhythmia
Ischemia Vasoconstriction

Atherosclerosis
Renin Release

Sodium Retention
Renal Vascular Resistance

Kidney

Venous
Capacitation

Vasoconstriction

Sympathetic
Hyperactivity

Symapathetic 
Tone ↑ 

Symapathetic 
Tone ↓ 

Efferent

Afferent

Figure 2.  Schematic representation of the 
carotid chemoreceptor and baroreceptor 
reflexes. Afferents relay through the 
brain stem to affect sympathetic activity 
controlling the function of a variety of end 
organs. This includes both physiological 
responses affecting arterial pressure 
and pathophysiological effects, such as 
hypertrophy and atherosclerosis. CNS 
indicates central nervous system.
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Increased tonic excitatory input from peripheral chemorecep-
tors can contribute to sympathetic overactivity45 and cardiac 
baroreceptor dysfunction23 and poor outcome.23,24 Increases in 
peripheral chemoreflex sensitivity directly decrease baroreceptor 
function in congestive heart failure patients, possibly contribut-
ing to sympathetic overactivity.45

Preclinical Data Linking Chemoreflex Sensitivity to 
Congestive Heart Failure Pathology
Chemoreflex sensitivity is enhanced in rabbits with pacing-
induced HF.46 Nerve activity of CB chemoreceptors and renal 
sympathetic nerve activity (RSNA), both at rest and in response 

to hypoxia, is enhanced in a pacing model of HF in rab-
bits.47 In this model, hyperoxic inhibition of the chemoreflex 
reduces resting RSNA, documenting that the chemoreceptor 
hyperactivity underlies the systemic and renal-specific sympa-
thetic hyperactivity. This increased RSNA initiates the triad of 
renin release, sodium retention, and reduced renal blood flow, 
all 3 documented components of the cardiorenal syndrome. 
Furthermore, CB denervation in this HF model results in 
attenuation of both resting RSNA and plasma norepinephrine 
levels. These animal data demonstrate that CB chemoreflex 
function is hyperactive in HF and that excessive CB activity 
is sufficient to cause chronic increases of systemic and renal-
specific sympathetic signaling, whereas CB removal attenuates 
both systemic sympathetic nerve activity and RSNA.

The specific mechanisms underlying the excessive che-
mosensory output from the CB in HF are being elucidated. 
Studies indicate that activation of the local angiotensin II 
system18,46 and a decreased neural nitric oxide synthase–nitric 
oxide pathway48–50 in the CB are involved in the augmenta-
tion of CB chemoreceptor activity induced by HF. Recently, 
Ding et al51 showed that chronically reducing blood flow to the 
CB, to the same degree as seen in pacing-induced HF, results 
in excessive CB activity. This implies that derangements of 
CB perfusion, secondary to HF or because of elevated sym-
pathetic activity to CB arterioles and local inflammation, are 
sufficient to initiate chemoreflex hypersensitivity and subse-
quent further increases in systemic sympathetic and decreases 
in parasympathetic function.

These data provide a mechanistic basis for the hypothesis 
that a reduced cardiac output and attendant CB hypoperfusion 
in advanced HF may underlie a tonic activation of CB afferent 
output sufficient to cause reflex sympathetic hyperactivation. 
Additional intermittent hypoxia or acidosis or inflammation 
(all likely to occur in patients with sleep apnea) could cause 
further episodic activation of CB reflexes. Inactivation of CB 
reflexes would therefore attenuate this process.

Chemoreflex inhibition after selective CB infusion with 
dopamine has been used to demonstrate the physiological 

Figure 3.  In established hypertension, carotid body denervation 
(CBD) is antihypertensive, lowers respiratory rate (transiently) 
and the low frequency of systolic pressure in the spontaneously 
hypertensive rats (SHR). Time profile of systolic blood pressure 
(SBP), respiratory rate (RR, breaths per minute), and low 
frequency (LF) of SBP (an indirect index of vasomotor tone) 5 
days before and 21 days after either CBD (arrowed; n=8) or sham 
surgery (n=7) in adult (12 week) SHR. SBP fell by ≈25 mm Hg 
post-CBD and showed no signs of recovery. #P<0.05. Data 
from Abdala et al.28

Figure 4.  Blood pressure changes in patients after bilateral 
removal of the carotid body (CB). Follow-up until 6 months 
postprocedure. Arrow indicates time of CB resection. Note the 
persistent drop in systolic (SYST) and diastolic (DIAST) pressure 
(PR) in the hypertensive group. Data from Nakayama et al.38
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importance of chemoreflex hypersensitivity in a pacing model 
of HF in dogs. In healthy dogs, CB inhibition during exercise 
(but not at rest) caused an immediate vasodilatory response 
and a decrease in blood pressure. When comparing vasodi-
lation from CB inhibition versus α-adrenergic blockade, CB 
activity accounts for approximately one third of the total sym-
pathetic activity during exercise. In contrast to healthy dogs, 
CB inhibition at rest in HF dogs produces vasodilation, and 
a similar vasodilatory response during exercise, findings that 
were abolished by α-adrenergic blockade. These results ver-
ify an important role for the CB in sympathetically mediated 
cardiovascular control in the healthy animal during exercise 
and in the HF animal both at rest and during exercise.52 This 
pathophysiology is consistent across multiple diseases, such 
as hypertension, sleep apnea, and chronic kidney diseases, 
all of which are characterized by enhanced chemosensitivity 
causing high sympathetic activity and exaggerated sympa-
thetic restraint of blood flow to skeletal muscles. Thus, the 
hypersensitive chemoreflex in HF might play a critical role 
in the sensation of dyspnea and hence exercise intolerance in 
patients with these diseases.52

CB Hypersensitivity Is Associated With Increased 
Mortality in HF
In the pre-β-blocker era, Ponikowski et al23,53 correlated to 
enhanced peripheral chemosensitivity and baroreflex sensi-
tivity (BRS), with mortality in 80 consecutive HF patients. 
In these studies, chemosensitivity was defined on the basis 
of abnormal ventilatory responses to hypoxia and hyperoxia. 
The 3-year survival was 41% in patients with high chemo-
sensitivity when compared with 77% in 53 patients without 
(P<0.0002;  Figure 6).23,53 In the post-β-blocker era of 110 
consecutive systolic HF patients, 31 (28%) had enhanced che-
mosensitivity to both hypoxia and hypercapnia.24 Although 
the high chemosensitivity patients had the same left ventricu-
lar ejection fraction as the patients with normal chemosen-
sitivity, they were statistically more symptomatic (by New 
York Health Association class), had higher plasma brain natri-
uretic peptide and norepinephrine levels, a steeper regression 
slope relating minute ventilation/carbon dioxide output (VE/
VCO

2
 slope), more prevalent Cheyne-Stokes respiration, and 

more ventricular arrhythmias compared with the patients with 
normal chemosensitivity. Four-year survival was only 49%, 
in marked contrast to 100% for patients with normal chemo-
sensitivity (P<0.001). A multivariate analysis revealed that 

Figure 5.  Cardiovascular and respiratory 
changes after bilateral removal of the 
carotid body (CB). CB removal in a cohort 
of 32 patients with chronic obstructive 
pulmonary disease and asthma.39 Although 
not the primary purpose of surgery in 
these patients, arterial blood pressure 
reduction was noted. This figure illustrates 
the hemodynamic responses to prebilateral 
carotid body removal (pre-BCBR) data 
are at the end of 15 minutes of steady 
state and the postbilateral carotid body 
nonselective denervation (post-BCBR) 
corresponds with 5 minutes after the 
completion of the procedure. Importantly, 
there was an acute reduction in both 
systolic and diastolic blood pressures  
of ≈20 mm Hg.

Figure 6.  Kaplan-Meier plot showing 
survival rates of patients postmyocardial 
infarction. Those with high peripheral 
chemosensitivity, as indicated by an 
augmented ventilatory response to hypoxia, 
have a poorer prognosis than those patients 
with normal chemosensitivity. Data from 
Ponikowski et al.53

 at University of Bristol Information Services on March 14, 2013http://hyper.ahajournals.org/Downloaded from 

http://hyper.ahajournals.org/


10    Hypertension    January 2013

elevation in chemosensitivity was the strongest independent 
predictor of mortality.24 These data support elevated sympa-
thetic tone from CB activation/hypersensitivity correlates, and 
may underlie mortality and morbidity in CHF.

CB Removal, Denervation, or Blockade Improves 
CHF Physiology
Transient hyperoxia to suppress CB activity has a marked 
beneficial effect on BRS and heart rate variability in patients 
with HF. In 26 stable HF patients, peripheral chemosensitiv-
ity, heart rate variability, and BRS were performed by spec-
tral analysis of HR, and 12 patients underwent repeat testing 
under conditions of transient 100% O

2
 hyperoxia. At base-

line, peripheral chemosensitivity correlated inversely with 
heart rate variability (r=−0.52; P=0.006) and BRS (r=−0.60; 
P=0.005). Transient hyperoxia resulted in an improvement in 
both autonomic balance and BRS.23

Subsequently, Moore et al54 evaluated 12 patients with 
chronic HF who underwent serial submaximal and maxi-
mal exercise tests at inspired oxygen concentrations of 21% 
(room air), 30%, and 50%, sufficient to suppress excess 
chemoreflex activity. Mean (±SD) exercise duration during 
progressive testing to maximum exercise capacity was pro-
longed from 548 seconds (±276 seconds) on room air to 632 
seconds (±285 seconds) on 50% oxygen (P<0.05). During 
steady-state exercise at 45 W, oxygen enrichment to 50% was 
associated with significantly increased arterial oxygen satu-
ration (94.6±1.9% to 97.5±1.3%), and significantly reduced 
minute ventilation (36.1±8.6 to 28.1±5.9 L/min), and sub-
jective scores for fatigue and breathlessness (13.9±3.1 to 
11.5±3.5). Compared with room air, intermediate changes 
were observed with 30% inspired oxygen. Importantly, these 
changes occurred, despite essentially unchanged total oxygen 
delivery, suggesting the functional improvement was medi-
ated by chemosensitivity modulation and not by improved 
peripheral oxygen delivery.54

Beyond these hemodynamic changes, inactivation of 
peripheral chemoreflex hyperactivity may alter the underly-
ing perception of dyspnea and improve respiratory dynamics. 
Initial experience of surgical resection of the CB for chronic 
lung diseases demonstrates reduced respiratory rate, which 
itself may contribute to reduced sympathetic tone and reduc-
tions of blood pressure, and further alters the subjective per-
ception of dyspnea: after CB resection in 27 patients, 16 had 
a long-term decrease in dyspnea and 9 had increased physical 
activity.55 We propose that the mechanism must be linked to 
removal of the peripheral chemosensitivity to CO

2
.

Certainly, a hyperactive chemoreflex contributes to exces-
sive RSNA, leading to an increase in sodium retention and 
volume expansion. Additionally, acute shifts of blood volume 
from the highly sympathetically innervated splanchnic venous 
storage sites to central circulation are a result of the static 
changes in sympathetic activity, consequent to chemosensitiv-
ity.56 Selectively reducing splanchnic sympathetic signaling or 
reducing the potential for acute changes in CB contribution to 
systemic sympathetic drive may significantly reduce the fre-
quency or severity of acute decompensated HF.

Similarly, the role of the peripheral chemoreceptors in mod-
ifying baroreceptor function and global sympathetic and para-
sympathetic activity may contribute to the propensity for HF 

patients to develop tachy atrial and ventricular rhythms. Life 
events that are associated with excessive sympathetic drive 
are associated with sudden death57,58 and recent reports of suc-
cessful treatment of catecholaminergic ventricular tachycardia 
with renal denervation provide a potential link between sys-
temic adrenergic state and tachyarrhythmic potential.59

Other Diseases of Elevated Systemic 
Sympathetic Activity
Similar to hypertension and HF, end-stage renal disease, 
chronic kidney disease, and insulin resistance are disorders 
associated with elevated sympathetic activity. Removal of 
sources of excessive sympathetic drive, such as the kidney, has 
been associated with improvements in blood pressure in both 
chronic kidney disease and reduction of insulin resistance.60,61 
The CB may prove to be an inviting novel therapeutic tar-
get to treat chronic kidney diseases and insulin resistance. 
Regarding the latter, although the animal data are controver-
sial,62–64 hypoglycemia has been shown to stimulate peripheral 
chemoreceptors with the expectation for a reflex elevation 
of blood glucose levels.64 Because diabetes mellitus is often 
prevalent in cardiovascular disease, CB ablation could have an 
additional benefit in controlling plasma glucose levels.

Safety
Open surgical removal of the CB has been extensively 
reported between the 1940s and 1980s for the treatment of 
drug-resistant asthma, chronic lung diseases, emphysema, 
CB tumors, and carotid sinus syndrome. Details on the acute 
procedural and chronic outcomes of single and bilateral CB 
removal are available in >15 000 patients providing the basis 
for understanding the risks that might be associated with 
therapeutic CB ablation for chemoreceptor hypersensitivity 
syndromes.

Several different surgical techniques have been used to 
remove the CB and the nerves innervating this organ. Both 
medial and lateral surgical approaches to the CB have been 
used, the medial approach requiring extensive mobilization of 
the common carotid and its bifurcation. As a result of the small 
size of the CB, the procedure was typically performed without 
direct visualization or knowledge of its precise location.

Death From Surgical Removal of the CB Is 
Extremely Rare
Although initially investigators expressed concerns that CB 
resection might remove functions critical for survival, pub-
lished mortality rates are not increased as a result of bilateral 
CB resection, despite the preexisting serious comorbidity.55,65 
Among the >15 000 published cases, there are scant docu-
mentation of mortality linked to the CB removal. In the 15 000 
cases, 13 cases of perioperative death were described within 
48 hours after surgery. None of the deaths were related to the 
removal of the chemosensory function of the CB; most were 
related to vascular misadventure and comorbidity in a popula-
tion with severe chronic lung diseases. In the online-only Data 
Supplement, we list the number of patients who underwent 
CB resection (unilateral or bilateral) for each of the reported 
studies we have found in the literature.

Initial anecdotal reports of mortality among deep diving, 
breath-holding Japanese men raised concerns about hypoxic 
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and hypercapnic unawareness; however, in 1991, an edito-
rial65 noted the complete absence of medical information on 
the causes of these deaths or reason to attribute the mortality 
to the CB resections. A reported death of a single patient 
with progressive and severe chronic obstructive pulmonary 
disease with reduced baseline Po

2
, who refused to use oxy-

gen, suggested possible hypoxic unawareness.66 However, 
and importantly, this 1 of 15 000 cases is the only known 
documented death that can be directly linked to CB removal. 
The follow-up time of the studies with >15 000 was usually 
>1 year, up to 20 years. Additionally, a long-term mortal-
ity study of 384 consecutive bilateral CB removal surgeries 
performed by the Medicare Appeals Council did not show an 
increased mortality.65

Despite the theoretical concern about asymptomatic 
hypoxia related to the loss of peripheral chemoreceptors 
in patients with severe underlying lung disease, the peer-
reviewed literature makes mention of only occasional epi-
sodes of asymptomatic hypoxia and identifies no patient 
who required medical intervention or suffered clinical con-
sequences. This may be a consequence of the high number of 
redundant chemoreceptors throughout the body. Unilateral 
and bilateral CB removal may result in a fall in respiratory 
rate and minute ventilation. In hypertensive rats, bilateral CB 
denervation resulted in a reduction in respiratory frequency, 
but this was transient and recovered to baseline.27 Historical 
surgeries for CB removal have reported a rise in CO

2
 and fall 

in Po
2
. The changes were more pronounced in cases with 

structural lung disease like chronic obstructive pulmonary 
disease rather than in patients without structural lung like 
asthma.55,66 The rise of Pco

2
 may provide clinical benefit to 

HF patients with chronic respiratory alkalosis and associated 
sleep disorders.

Surgical Adverse Events Related to CB Resection
The medial and lateral approaches to CB resection have asso-
ciated neurological and vascular complications that might be 

expected from blunt dissection of the CB and surgical dener-
vation of surrounding periarterial space. From the 15 000 
reported CB removals and denervations, 5600 patients are 
reported in publications that detail surgical and perioperative 
complications. These complications are detailed in the table 
below. The most commonly reported adverse effects include 
transient self-limited headaches and temporary numbness of 
lower jaw, a probable complication of inadvertent nerve dam-
age. The overall frequency of any adverse event during open 
blunt dissection is <3% (Table). Notably, these cohorts include 
patients with predominantly severe underlying chronic and 
acute pulmonary diseases and may not have had indentified 
risk factors for advanced atherosclerosis. Thus, it is possible 
that open dissection with common carotid and bifurcation 
manipulation in atherosclerotic prone individuals could be 
associated with different complication rates.

Conclusions
The preclinical animal and surgical human studies have con-
firmed the importance of the CB in mediating sympathetic 
hyperactivity, heightened RSNA, and baroreflex inhibition, 
while demonstrating that selective CB suppression amelio-
rates blood pressure and left ventricular hypertrophy in animal 
models of hypertension and improving exercise intolerance in 
humans. Human epidemiologic data confirm the association 
of clinical chemoreflex hypersensitivity with mortality in HF. 
These data support the pursuit of therapeutic CB removal as 
a treatment strategy for human conditions where autonomic 
imbalance is a critical component of disease or its progres-
sion. Safety studies in humans have been initiated to examine 
the feasibility and describe the potential benefits of this thera-
peutic target. Ultimately, sufficiently powered, randomized, 
and controlled trials will be necessary to confirm the value of 
targeting the hypersensitive chemoreflex in conditions, such 
as essential hypertension, HF, and chronic kidney disease and 
insulin resistance.

Table.  Sum Total of All Reported Adverse Events in 5600 Patients From 31 
Publications

Adverse Event Cases Reported Range, % Frequency, %

Hypertension (transient) 12 0–39 0.2

Hypertension (permanent) 22 0–33 0.4

Hypotension (transient) 4 0–3.6 0.1

Hypotension (permanent) 29 0–4.5 0.5

Headache 2 0–3.6 <0.1

Hypoglossus paresis (transient) 163 0–10 2.9

Hypoglossus paresis (permanent) 3 0–1.8 0.1

Hemiparesis (transient) 9 0–1.8 0.2

Hemiparesis (permanent) 1 0–0.08 <0.1

Vessel injury 12 0–9.5 0.2

Range is the maximum reported adverse events in individual reports. Note that the 33% only 
occurred in 1 article reporting a total of 3 cases in which the hypertension occurred in 1 of 3 patients 
and may be attributed to significant permanent damage of the baroreceptor nerves from being on the 
surgical learning curve with only a small number of actual CB surgeries (3) performed. Frequency = % 
of total reported events in all 5600 patients across 31 articles.
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