1,072 research outputs found

    Ultra-thin Topological Insulator Bi2Se3 Nanoribbons Exfoliated by Atomic Force Microscopy

    Full text link
    Ultra-thin topological insulator nanostructures, in which coupling between top and bottom surface states takes place, are of great intellectual and practical importance. Due to the weak Van der Waals interaction between adjacent quintuple layers (QLs), the layered bismuth selenide (Bi2Se3), a single Dirac-cone topological insulator with a large bulk gap, can be exfoliated down to a few QLs. In this paper, we report the first controlled mechanical exfoliation of Bi2Se3 nanoribbons (> 50 QLs) by an atomic force microscope (AFM) tip down to a single QL. Microwave impedance microscopy is employed to map out the local conductivity of such ultra-thin nanoribbons, showing drastic difference in sheet resistance between 1~2 QLs and 4~5 QLs. Transport measurement carried out on an exfoliated (\leq 5 QLs) Bi2Se3 device shows non-metallic temperature dependence of resistance, in sharp contrast to the metallic behavior seen in thick (> 50 QLs) ribbons. These AFM-exfoliated thin nanoribbons afford interesting candidates for studying the transition from quantum spin Hall surface to edge states

    Blood-sampling collection prior to surgery may have a significant influence upon biomarker concentrations measured

    Get PDF
    Abstract Background Biomarkers can be subtle tools to aid the diagnosis, prognosis and monitoring of therapy and disease progression. The validation of biomarkers is a cumbersome process involving many steps. Serum samples from lung cancer patients were collected in the framework of a larger study for evaluation of biomarkers for early detection of lung cancer. The analysis of biomarker levels measured revealed a noticeable difference in certain biomarker values that exhibited a dependence of the time point and setting of the sampling. Biomarker concentrations differed significantly if taken before or after the induction of anesthesia and if sampled via venipuncture or arterial catheter. Methods To investigate this observation, blood samples from 13 patients were drawn 1–2 days prior to surgery (T1), on the same day by venipuncture (T2) and after induction of anesthesia via arterial catheter (T3). The biomarkers Squamous Cell Carcinoma antigen (CanAG SCC EIA, Fujirebio Diagnostics, Malvern, USA), Carcinoembrionic Antigen (CEA), and CYFRA 21-1 (Roche Diagnostics GmbH, Mannheim, Germany) were analyzed. Results SCC showed a very strong effect in relation to the sampling time and procedure. While the first two points in time (T1; T2) were highly comparable (median fold-change: 0.84; p = 0.7354; correlation ρ = 0.883), patients showed a significant increase (median fold-change: 4.96; p = 0.0017; correlation ρ = -0.036) in concentration when comparing T1 with the sample time subsequent to anesthesia induction (T3). A much weaker increase was found for CYFRA 21-1 at T3 (median fold-change: 1.40; p = 0.0479). The concentration of CEA showed a very small, but systematic decrease (median fold-change: 0.72; p = 0.0039). Conclusions In this study we show the unexpectedly marked influence of blood withdrawal timing (before vs. after anesthesia) and procedure (venous versus arterial vessel puncture) has on the concentration of the protein biomarker SCC and to a less extent upon CYFRA21-1. The potential causes for these effects remain to be elucidated in subsequent studies, however these findings highlight the importance of a standardized, controlled blood collection protocol for biomarker detection

    Weak pairwise correlations imply strongly correlated network states in a neural population

    Get PDF
    Biological networks have so many possible states that exhaustive sampling is impossible. Successful analysis thus depends on simplifying hypotheses, but experiments on many systems hint that complicated, higher order interactions among large groups of elements play an important role. In the vertebrate retina, we show that weak correlations between pairs of neurons coexist with strongly collective behavior in the responses of ten or more neurons. Surprisingly, we find that this collective behavior is described quantitatively by models that capture the observed pairwise correlations but assume no higher order interactions. These maximum entropy models are equivalent to Ising models, and predict that larger networks are completely dominated by correlation effects. This suggests that the neural code has associative or error-correcting properties, and we provide preliminary evidence for such behavior. As a first test for the generality of these ideas, we show that similar results are obtained from networks of cultured cortical neurons.Comment: Full account of work presented at the conference on Computational and Systems Neuroscience (COSYNE), 17-20 March 2005, in Salt Lake City, Utah (http://cosyne.org

    Early identification of disease progression in ALK-rearranged lung cancer using circulating tumor DNA analysis

    Get PDF
    Targeted kinase inhibitors improve the prognosis of lung cancer patients with ALK alterations (ALK+). However, due to the emergence of acquired resistance and varied clinical trajectories, early detection of disease progression is warranted to guide patient management and therapy decisions. We utilized 343 longitudinal plasma DNA samples from 43 ALK+ NSCLC patients receiving ALK-directed therapies to determine molecular progression based on matched panel-based targeted next-generation sequencing (tNGS), and shallow whole-genome sequencing (sWGS). ALK-related alterations were detected in 22 out of 43 (51%) patients. Among 343 longitudinal plasma samples analyzed, 174 (51%) were ctDNA-positive. ALK variant and fusion kinetics generally reflected the disease course. Evidence for early molecular progression was observed in 19 patients (44%). Detection of ctDNA at therapy baseline indicated shorter times to progression compared to cases without mutations at baseline. In patients who succumbed to the disease, ctDNA levels were highly elevated towards the end of life. Our results demonstrate the potential utility of these NGS assays in the clinical management of ALK+ NSCLC

    SARS‐CoV‐2 receptor ACE 2 and TMPRSS 2 are primarily expressed in bronchial transient secretory cells

    Get PDF
    The SARS-CoV-2 pandemic affecting the human respiratory system severely challenges public health and urgently demands for increasing our understanding of COVID-19 pathogenesis, especially host factors facilitating virus infection and replication. SARS-CoV-2 was reported to enter cells via binding to ACE2, followed by its priming by TMPRSS2. Here, we investigate ACE2 and TMPRSS2 expression levels and their distribution across cell types in lung tissue (twelve donors, 39,778 cells) and in cells derived from subsegmental bronchial branches (four donors, 17,521 cells) by single nuclei and single cell RNA sequencing, respectively. While TMPRSS2 is strongly expressed in both tissues, in the subsegmental bronchial branches ACE2 is predominantly expressed in a transient secretory cell type. Interestingly, these transiently differentiating cells show an enrichment for pathways related to RHO GTPase function and viral processes suggesting increased vulnerability for SARS-CoV-2 infection. Our data provide a rich resource for future investigations of COVID-19 infection and pathogenesis

    Impact of Natural or Synthetic Singletons in the Capsid of Human Bocavirus 1 on Particle Infectivity and Immunoreactivity

    Get PDF
    Human bocavirus 1 (HBoV1) is a parvovirus that gathers increasing attention due to its pleiotropic role as a pathogen and emerging vector for human gene therapy. Curiously, albeit a large variety of HBoV1 capsid variants has been isolated from human samples, only one has been studied as a gene transfer vector to date. Here, we analyzed a cohort of HBoV1-positive samples and managed to PCR amplify and sequence 29 distinct HBoV1 capsid variants. These differed from the originally reported HBoV1 reference strain in 32 nucleotides or four amino acids, including a frequent change of threonine to serine at position 590. Interestingly, this T590S mutation was associated with lower viral loads in infected patients. Analysis of the time course of infection in two patients for up to 15 weeks revealed a gradual accumulation of T590S, concurrent with drops in viral loads. Surprisingly, in a recombinant vector context, T590S was beneficial and significantly increased titers compared to that of T590 variants but had no major impact on their transduction ability or immunoreactivity. Additional targeted mutations in the HBoV1 capsid identified several residues that are critical for transduction, capsid assembly, or DNA packaging. Our new findings on the phylogeny, infectivity, and immunoreactivity of HBoV1 capsid variants improve our understanding of bocaviral biology and suggest strategies to enhance HBoV1 gene transfer vectors. IMPORTANCE The family of Parvoviridae comprises a wide variety of members that exhibit a unique biology and that are concurrently highly interesting as a scaffold for the development of human gene therapy vectors. A most notable example is human bocavirus 1 (HBoV1), which we and others have recently harnessed to cross-package and deliver recombinant genomes derived from another parvovirus, the adeno-associated virus (AAV). Here, we expanded the repertoire of known HBoV1 variants by cloning 29 distinct HBoV1 capsid sequences from primary human samples and by analyzing their properties as AAV/HBoV1 gene transfer vectors. This led to our discovery of a mutational hot spot at HBoV1 capsid position 590 that accumulated in two patients during natural infection and that lowers viral loads but increases vector yields. Thereby, our study expands our current understanding of HBoV1 biology in infected human subjects and concomitantly provides avenues to improve AAV/HBoV1 gene transfer vectors.Peer reviewe

    Germline genetic variants of the renin-angiotensin system, hypoxia and angiogenesis in non-small cell lung cancer progression : discovery and validation studies

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Introduction: The renin–angiotensin system (RAS) is involved in cell proliferation, immunoinflammatory response, hypoxia and angiogenesis, which are critical biological processes in lung cancer. Our aim was to study the association of putatively functional genetic polymorphisms in genes coding for proteins involved in RAS, hypoxia and angiogenesis with non-small cell lung cancer (NSCLC) prognosis. Methods: Genotyping of 52 germline variants from genes of the RAS and hypoxic/angiogenic factors/receptors was performed using MassARRAY iPLEX Gold in a retrospective cohort (n = 167) of advanced NSCLC patients. Validation of the resulting genetic markers was conducted in an independent group (n = 190), matched by clinicopathological characteristics. Results: Multivariate analysis on the discovery set revealed that MME rs701109 C carriers were protected from disease progression in comparison with homozygous T (hazard ratio (HR) = 0.5, 95% confidence interval (CI) = 0.2–0.8, p = 0.010). Homozygous A and T genotypes for KDR rs1870377 were at increased risk for disease progression and death compared to heterozygous (HR = 1.7, 95% CI = 1.2–2.5, p = 0.005 and HR = 2.1, 95% CI = 1.2–3.4, p = 0.006, respectively). Carriers of homozygous genotypes for ACE2 rs908004 presented increased risk for disease progression, only in the subgroup of patients without tumour actionable driver mutations (HR = 2.9, 95% CI = 1.3–6.3, p = 0.010). Importantly, the association of homozygous genotypes in MME rs701109 with risk for disease progression was confirmed after multivariate analysis in the validation set. Conclusion: This study provides evidence that MME polymorphism, which encodes neprilysin, may modulate progression-free survival in advanced NSCLC. Present genetic variation findings will foster basic, translational, and clinical research on their role in NSCLC.M.J.C. was supported by the Associação de Estudos Respiratórios and the Portuguese Pulmonology Society.info:eu-repo/semantics/publishedVersio

    Virulence Factors Identified by Cryptococcus neoformans Mutant Screen Differentially Modulate Lung Immune Responses and Brain Dissemination

    Get PDF
    Deletions of cryptococcal PIK1, RUB1, and ENA1 genes independently rendered defects in yeast survival in human CSF and within macrophages. We evaluated virulence potential of these genes by comparing wild-type Cryptococcus neoformans strain H99 with deletant and complement strains in a BALB/c mouse model of pulmonary infection. Survival of infected mice; pulmonary cryptococcal growth and pathology; immunological parameters; dissemination kinetics; and CNS pathology were examined. Deletion of each PIK1, RUB1, and ENA1 differentially reduced pulmonary growth and dissemination rates of C. neoformans and extended mice survival. Furthermore, pik1Δ induced similar pathologies to H99, however, with significantly delayed onset; rub1Δ was more efficiently contained within pulmonary macrophages and was further delayed in causing CNS dissemination/pathology; whereas ena1Δ was progressively eliminated from the lungs and did not induce pathological lesions or disseminate into the CNS. The diminished virulence of mutant strains was associated with differential modulation of pulmonary immune responses, including changes in leukocyte subsets, cytokine responses, and macrophage activation status. Compared to H99 infection, mutants induced more hallmarks of a protective Th1 immune response, rather than Th2, and more classical, rather than alternative, macrophage activation. The magnitude of immunological effects precisely corresponded to the level of virulence displayed by each strain. Thus, cryptococcal PIK1, RUB1, and ENA1 differentially contribute to cryptococcal virulence, in correlation with their differential capacity to modulate immune responses
    corecore