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ABSTRACT 27 

Human bocavirus 1 (HBoV1) is a parvovirus that gathers increasing attention due to its 28 

pleiotropic role as a pathogen and emerging vector for human gene therapy. Curiously, albeit a 29 

large variety of HBoV1 capsid variants has been isolated from human samples, only one has 30 

been studied as a gene transfer vector to date. Here, we analyzed a cohort of HBoV1-positive 31 

samples and managed to PCR-amplify and sequence 29 distinct HBoV1 capsid variants. These 32 

differed from the originally reported HBoV1 reference strain in 32 nucleotides or four amino 33 

acids, including a frequent change of threonine to serine at position 590. Interestingly, this 34 

T590S mutation was associated with lower viral loads in infected patients. Analysis of the time 35 

course of infection in two patients for up to 15 weeks revealed a gradual accumulation of 36 

T590S, concurrent with drops in viral loads. Surprisingly, in a recombinant vector context, 37 

T590S was beneficial and significantly increased titers as compared to T590 variants but had no 38 

major impact on their transduction ability or immunoreactivity. Additional targeted mutations in 39 

the HBoV1 capsid identified several residues that are critical for transduction, capsid assembly 40 

or DNA packaging. Our new findings on the phylogeny, infectivity and immunoreactivity of 41 

HBoV1 capsid variants improve our understanding of bocaviral biology and suggest strategies 42 

to enhance HBoV1 gene transfer vectors. 43 

 44 

IMPORTANCE 45 

The family of Parvoviridae comprises a wide variety of members that exhibit a unique biology 46 

and that are concurrently highly interesting as a scaffold for the development of human gene 47 

therapy vectors. A most notable example is human bocavirus 1 (HBoV1), which we and others 48 

have recently harnessed to cross-package and deliver recombinant genomes derived from 49 

another parvovirus, the adeno-associated virus (AAV). Here, we expanded the repertoire of 50 

known HBoV1 variants by cloning 29 distinct HBoV1 capsid sequences from primary human 51 

samples and by analyzing their properties as AAV/HBoV1 gene transfer vectors. This led to our 52 
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discovery of a mutational hot spot at HBoV1 capsid position 590 that has accumulated in two 53 

patients during natural infection and that lowers viral loads but increases vector yields. Thereby, 54 

our study expands our current understanding of HBoV1 biology in infected human subjects and 55 

concomitantly provides avenues to improve AAV/HBoV1 gene transfer vectors. 56 
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INTRODUCTION 78 

Parvoviruses are small, non-enveloped viruses that package a single-stranded (ss)DNA 79 

genome of ~5-6 kb. This genome contains two main open reading frames (ORF) that comprise 80 

the non-structural (ns) and the capsid genes (cap or vp). Bocaviruses (BoV), which belong to 81 

the autonomous parvoviruses, harbor an additional unique ORF that encodes the 82 

nucleophosphoprotein 1 (NP1). Intriguingly, a series of recent reports implies that ssDNA 83 

viruses including parvoviruses may evolve more rapidly than anticipated, evidenced by 84 

measurements of high nucleotide substitution rates (10−3 to 10−6 substitutions/site/year) that are 85 

comparable to the rate of RNA virus counterparts (1, 2). For example, high rates of 1×10-4 86 

substitutions/site/year were inferred for some autonomous parvoviruses such as the carnivore 87 

parvoviruses (3, 4), human parvovirus B19 (5) and porcine parvovirus (6). Moreover, several 88 

studies have estimated a similar rate of both, structural and non-structural parvovirus gene 89 

evolution. For example, in human bocavirus 1 (HBoV1), the np1 ORF shows the highest rate of 90 

mutations among the ns genes that correlates with significant changes in viral titer (7). This 91 

could be a result of the multiple roles of NP1 in viral replication (8) and capsid protein 92 

expression (9), in addition to its immunomodulatory function (10). Changes in the C-terminal 93 

part of the ns1 ORF were shown to directly influence the role of NP1 in viral genome replication 94 

(8), which underlines the importance of a tightly regulated co-evolution of the non-structural 95 

genes. Viral titers are also influenced by mutations in the structural vp gene, especially in the 96 

VP1u region that is vital for the infectivity of the virus (7, 11). 97 

The parvoviral capsid is an important determinant of virus tropism, host range and reaction to 98 

the immune system. It was shown that even small amino acid (aa) changes in the vp ORF can 99 

largely alter virus-cell interactions including cell-type preference. For instance, adeno-100 

associated virus type 1 (AAV1) and AAV6 share 99% aa identity but exhibit a distinct polarity 101 

bias in primary airway epithelia (pHAE) (12) as well as different abilities to transduce human and 102 
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mouse hematopoietic stem cells (13). Even aa changes in the VP proteins within one AAV 103 

serotype can drastically alter viral features, as exemplified by the two sub-types of AAV3, 104 

AAV3a and AAV3b, which differ by only 6 aa but display distinct affinities to heparin (14, 15). 105 

Another example is the pair of rodent parvoviruses MVMp and MVMi (minute virus of mice) that 106 

share 97% sequence identity but differ in their in vitro (16) and in vivo cell tropisms (17). 107 

Similarly, the CPV2 and CPV-2a strains (canine parvovirus) differ only in four amino acids, 108 

which, however, lead to the extended feline tropism of CPV-2a (18). 109 

This rich repertoire of parvoviruses with distinct properties has drawn enormous interest to their 110 

potential use as gene transfer vectors in cancer and gene therapy. In the recombinant genomes 111 

of these vectors, either all viral sequences or parts thereof are replaced by transgenes of 112 

interest. To package the recombinant genomes, the missing viral elements have to be supplied 113 

in trans during vector production (19-22). In particular, AAV has emerged as a promising viral 114 

vector following its extensive study for over five decades. A major reason for its popularity is the 115 

feasibility to pseudotype recombinant AAV2 genomes with AAV capsids from other natural 116 

serotypes or synthetic variants, which allows for transgene delivery to different target organs 117 

(23). Another recent example of interesting parvoviral vectors are chimeric rAAV/BoV vectors in 118 

which a rAAV genome is pseudotyped with the capsid proteins from primate BoV (22, 24). One 119 

of these BoV variants, HBoV1, has a unique tropism for the airways and has been utilized as 120 

gene delivery vehicle in vitro and in vivo (25). Curiously, despite the wealth of HBoV1 vp 121 

sequences that were isolated in many areas of the world, only one particular HBoV1 variant 122 

(GenBank: GQ925675) has so far been used as viral vector.  123 

Accordingly, we aimed to study whether and how naturally occurring variations in the HBoV1 vp 124 

sequence affect properties of the virus. To this end, we constructed a battery of new 125 

pseudotyped viral vectors from HBoV1 variants that were de novo isolated from patient samples 126 

or described in previous studies. Next, we packaged a Gaussia luciferase (Gluc)-encoding rAAV 127 
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genome into each of the various HBoV1 capsids. This allowed us to characterize the effects of 128 

naturally occurring single-point mutations ("singletons") on viral DNA packaging, transduction 129 

and immunological reactivity with anti-HBoV1 antibodies. The results of our work reveal 130 

interesting, previously underappreciated aspects of HBoV1 biology and have important 131 

implications for the choice and use of rAAV/HBoV1 vectors in future gene therapy applications.  132 

 133 

RESULTS 134 

Analysis of capsid DNA and protein sequence diversity in naturally occurring HBoV1 variants  135 

To analyze the natural sequence diversity of HBoV1 capsid genes and proteins, we collected a 136 

total of 64 samples from patients at the University Hospitals in Heidelberg and Cologne (both 137 

Germany) who had previously been tested positive for HBoV1. These samples comprised 138 

tracheal secretions, aspirates, pharyngeal washes, sputum as well as bronchioalveolar lavages 139 

collected from children and adults in the years 2014 to 2016. From these 64 samples, we were 140 

able to PCR-amplify and sequence the entire HBoV1 capsid-coding region (2016 bp) in 29 141 

samples, i.e., in 45.3% of all samples (exemplified in Fig. 1A; full DNA sequences are shown in 142 

the Supplementary Dataset). Typically, failure to amplify or fully sequence the capsid gene 143 

correlated with low viral titers in the original sample below 1×106 viral genomes (vg) per ml.  144 

Interestingly, alignment of these 29 capsid DNA sequences with the HBoV1 reference sequence 145 

that was first reported by Allander et al. in 2005 (GenBank: DQ000495; note that this is not the 146 

sequence that is utilized in current HBoV1 vectors) showed differences in 32 nucleotide 147 

positions. As summarized in Supplementary Table 1 and Fig. 1B, the newly analyzed 148 

sequences carry between four and 19 mismatches with this reference sequence, corresponding 149 

to an average of 12.7 nucleotide differences per variant (368 variations in total, divided by 29 150 

samples). Accordingly, their overall DNA sequence identity to DQ000495 is 99.1 to 99.8%, or 151 
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99.4% on average. Moreover, we noted that the mutations cluster in 14 of the 32 positions, 152 

namely, 441, 445, 714, 984, 1140, 1168, 1170, 1176, 1188, 1308, 1758, 1767, 1768 and 1785 153 

(numbers are nucleotide positions in the HBoV1 vp1 capsid gene), where more than half of the 154 

29 sequences differed from the reference. 155 

On the protein level, these point mutations translated into substitutions at four positions in the 156 

671 aa HBoV1 VP1 capsid protein, as compared to the DQ000495 reference (Fig. 1C). Each of 157 

the 29 sequences differed in one to three positions, namely, 68, 149, 474 or 590 (numbers are 158 

aa positions in VP1), corresponding to identities of 99.6 to 99.9% (99.8% on average). Hence, 159 

the majority of nucleotide exchanges was silent on the VP1 protein level. Again, we observed a 160 

clustering of the mutations, most notable at aa position 149 (red in Fig. 1B-C) where 100% of all 161 

analyzed sequences carry a threonine instead of the alanine reported by Allander and 162 

colleagues (26). The second striking difference is seen at position 590 (orange in Fig. 1B-C) 163 

where we detected a serine instead of a threonine in 15 out of the 29 sequences. In addition, 164 

sample V1541706 carries asparagine instead of aspartate at position 68, and samples VK11443 165 

and VK12783 have a replacement of serine with asparagine at position 474. 166 

Next, we performed a phylogenetic analysis of all 29 DNA sequences together with 21 publicly 167 

available HBoV1 sequences from 14 countries and four continents. Additionally, we included the 168 

related viruses HBoV2, 3 and 4 (GenBank: NC012042, NC012564 and NC012729, respectively) 169 

as well as the non-primate bocaviruses, canine minute virus (NC004442) and bovine parvovirus 170 

1 (NC001540), which we collectively defined as outgroup. This analysis confirmed that all 29 171 

HBoV1 vp sequences cluster together with the 21 public sequences and are clearly distinct from 172 

the outgroup (bootstrap value of 99) (Fig. 1D).  173 

Correlation of HBoV1 capsid sequence diversity and virus infectivity  174 

In addition to the primary sequence, we analyzed the viral load in the original set of 64 HBoV1-175 

positive patient samples that we had collected. By using quantitative (q)PCR, we succeeded at 176 
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measuring the viral load for 39 samples, comprising the 29 for which we had previously 177 

obtained the full capsid sequence (see above) as well as 10 others where this information was 178 

lacking. The values obtained ranged from 1.82×103 to 6.13×1010 vg/ml, with a median of 179 

3.91×106 vg/ml (Fig. 2A). Prior work had defined a cutoff of 1×106 vg/ml above which symptoms 180 

of HBoV1 infection manifested in outpatients or inpatients (27). Accordingly, we can classify 15 181 

of the 39 samples as having a viral load below this cutoff, while the other 24 are above. 182 

As described above, HBoV1 VP1 aa position 590 is a hotspot for a change from threonine in 183 

DQ000495 to serine. In line with this, we noted that roughly half of the samples whose viral load 184 

we had determined carry a serine at this position. We thus correlated the occurrence of either 185 

threonine or serine with viral load for 31 of the 39 samples. This subset was selected based on 186 

the criteria that we could read over 90% of the complete capsid sequence and that we could 187 

unanimously identify position 590 as threonine or serine. Remarkably, this analysis showed that 188 

HBoV1 variants carrying a serine (T590S, n=17) have a ~18-fold lower viral load than those with 189 

the originally reported threonine (T590, n=14) (Fig. 2B). In detail, the average viral load for the 190 

T590S variant was 5.55×108 vg/ml, in contrast to 1.02×1010 vg/ml for variant T590.  191 

Among the analyzed samples, several had been collected from the same patient(s) at various 192 

time points, which allowed us to study dynamic changes in the HBoV1 capsid sequence and 193 

measure alterations in the viral load during the course of an infection. The results are depicted 194 

in Fig. 2C for patient A (four time points over a period of 15 weeks) and Fig. 2D for patient B 195 

(five time points over a period of three weeks). Changes at the nucleotide level over time were 196 

observed at positions 804, 873, 1140, 1168, 1170, 1701, 1767, 1768 and 1785. Two examples 197 

that were identified in both patients and that are illustrated in Fig. 2C-D are a gradual change of 198 

thymine to cytosine at position 1140, or a change of guanine to adenine at position 1170. 199 

Intriguingly, while these two mutations were silent on the protein level, we found that the gradual 200 

replacement in both patients over time of the nucleotide sequence 5'-AA-3' at position 201 
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1767/1768 by 5'-CT-3' resulted in an exchange of threonine at aa position 590 to serine, i.e., the 202 

same mutation that we had already observed and highlighted before. Congruent with the data in 203 

Fig. 2B, we measured a consistent drop in viral loads over time that concurred with the 204 

accumulation of the T590S mutation. This is evidenced by a reduction of viral loads in patient A, 205 

from 3.11×109 vg/ml at the earliest time point to 7.46×103 vg/ml at the latest (week 15) (Fig. 2C, 206 

E). Likewise, the viral loads in patient B dropped from 1.57×1010 vg/ml to 3.91×106 vg/ml over 207 

the course of three weeks (Fig. 2D-E). 208 

Dissection of the impact of changes in the vp ORF using recombinant HBoV1 vectors 209 

To further study the impact of the observed natural or, introduced later in this work, synthetic 210 

point mutations in the HBoV1 capsid, we harnessed a streamlined system for production of 211 

recombinant HBoV1 gene transfer vectors that we have established recently (24). Its hallmark is 212 

the ability to package rAAV vector genomes encoding a reporter into HBoV1 capsids, by triple-213 

transfecting HEK293T cells with three plasmids expressing all necessary factors including the 214 

HBoV1 capsid proteins, and by purifying the resulting vector particles via iodixanol density 215 

gradient centrifugation. Specifically, here, we used an AAV vector genome expressing Gaussia 216 

luciferase (Gluc), which is a secreted protein that is easily detected in the supernatant of 217 

cultured cells. For the latter, we used primary human airway epithelia (pHAE) based on findings 218 

by others and us that these are highly susceptible to HBoV1 transduction (24, 28). 219 

In total, we studied 18 HBoV1 capsid variants using this system, which comprised seven from 220 

our collection that had high viral loads between 3.4×109 and 6.1×1010 vg/ml and that exemplified 221 

the roughly equal distribution of either serine or threonine at position 590 (Fig. 3A-B; samples 222 

V1500812, V1602382, V1502611, V1512195, V1541706, V1613007 and VK11443). As 223 

compared to DQ000495, they differ in five to 18 nucleotides, or one to three amino acids. As 224 

two references, we included DQ000495 as well as GQ925675, i.e., the HBoV1 capsid variant 225 

that has been used in all recombinant HBoV1 vector preparations reported to date (24, 25, 29). 226 
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Furthermore, we selected nine variants that were described by Principi et al. in 2015 and that 227 

differ from DQ000495 in one to six amino acids (27). As the original sequences were not 228 

available to us as molecular clones, we recapitulated only non-synonymous substitutions that 229 

cause aa changes by successive overlap-extension PCR using DQ000495 as template 230 

(Supplementary Table 2 and 3). Of these nine capsids, seven were associated with high viral 231 

loads between 5×108 and 7.5×109 vg/ml in the study by Principi and colleagues (27). The 232 

remaining two variants from this study, named KPLGr1 and KPLGr2 here, represent two groups 233 

of patient-derived HBoV1 capsid sequences that were identical within each group and that were 234 

associated with low viral loads of 4.5×104 or 6.3×104 vg/ml, respectively. They were interesting 235 

since KPLGr1 carries the T590S mutation, while KPLGr2 has T590, thus representing the 236 

distribution of these two residues and making these two variants useful as additional controls. 237 

Altogether, this set of 18 capsid variants was composed of six carrying T590 and 12 with 238 

T590S.   239 

Titration of recombinant vectors based on HBoV1 capsid mutants 240 

To produce vectors based on the aforementioned 18 HBoV1 capsid variants, we performed 241 

three independent runs using three 15 cm2 dishes each, following our triple-transfection and 242 

iodixanol purification scheme (24). Titration by quantitative (q)PCR revealed titers for the 54 243 

(18×3) individual stocks between 6.51×108 to 6.61×1011 vg/ml (data not shown), with an 244 

average of 9.65×1010 vg/ml. The majority of capsid variants yielded titers in a range of 2×1010 to 245 

2×1011 vg/ml, with the notable exception of KPLMI-30 and KPLMI-3503 whose average titers 246 

were 1.13×1010 or 2.15×109 vg/ml, respectively. In contrast, KPLGr1 and KPLGr2 that had been 247 

associated with low viral loads in patients before (27) consistently produced well in our hands.  248 

We subsequently pooled all three independent preparations per capsid variant and further 249 

purified and concentrated them using Amicon Ultra-15 filter units. Final titers per nine 15 cm2 250 

dishes per capsid variant were between 4.11×1010 to 2.4×1011 vg/ml (average of 1.1×1011 vg/ml, 251 



11 
 

Fig. 3C), again with the exception of KPLMI-30 and KPLMI-3503, which yielded 1.7×109 or 252 

4.67×108 vg/ml, respectively. Titers for the 16 capsids that produced well were determined twice 253 

since these stocks were used in later transduction experiments (see below). On average, 254 

concentration using the Amicon Ultra-15 filters had resulted in a vector particle recovery of 42%. 255 

Interestingly, we noted a highly significant difference between the HBoV1 capsids depending on 256 

the presence of a threonine or serine at position 590. While the average titer of the six T590 257 

variants was 6.66×1010 vg/ml, it was 1.59×1011 vg/ml for all capsids with the T590S mutation, 258 

i.e., 2.39-fold higher (p=0.0003, Fig. 3D). Of note, for this calculation, we excluded the two low 259 

producers KPLMI-30 and KPLMI-3503 as they were obvious outliers. To facilitate the 260 

comparison of candidates and to highlight their differences throughout this work, five candidates 261 

were randomly chosen (including the two references DQ000495 and GQ925675) and colored.  262 

Comparison of the transduction efficiency of all HBoV1 capsid variants in pHAE 263 

To measure and compare the transduction efficiency of the 16 HBoV1 capsid variants that 264 

produced well, we used pHAE from five different donors (labeled 171469, 171476, 171834, 265 

171905, 171975 in the following). Each capsid was tested twice per donor (n=10 for each 266 

variant) and compared to two negative controls (two wells of untransduced cells). Per transwell, 267 

we applied 3×108 vg, which corresponds to a multiplicity of infection (MOI) of 600 based on a 268 

count of roughly 5×105 cells per transwell. As the Gluc reporter that was encoded by all vectors 269 

is secreted from the cells, we could collect cell culture supernatant at three successive time 270 

points (day 6, 9 or 12 post-transduction) and thus analyze the kinetics of transduction. 271 

Two general observations were, firstly, that the overall transduction efficiencies varied 272 

substantially between the donors, as best illustrated by the up to 10-fold differences in luciferase 273 

light units between donors #171476 and #171905 (Fig. 4A, also shown in Fig. 4D). Secondly, 274 

we noted donor-dependent relative differences in the performance of the various capsids. This 275 

is exemplified by variant KPLMI499 (yellow bars) that gave robust luciferase expression in 276 



12 
 

donors 171905 and 171975, but was less efficient in the other donors, 171469, 171476 and 277 

171834 (Fig. 4A, also shown in Fig. 4D). For these two reasons, the raw data for all five donors 278 

are depicted individually in Fig. 4A-B.  279 

Despite the donor variability, it was noteworthy that the two published variants, DQ000495 and 280 

GQ925675, were consistently among the top performers in all five donors. Furthermore, the 281 

HBoV1 reference sequence DQ000495 (green bars in Fig. 4A) that was originally reported in 282 

2005 significantly outperformed GQ925675 (orange bars) in the pHAE derived from donor 283 

171467 (Fig. 4A, also shown in Fig. 4D). This is intriguing considering that, to our best 284 

knowledge, the less efficient GQ925675 forms the basis for all recombinant AAV/HBoV1 vectors 285 

that are currently in use by us and others. Next to these two historic controls, also capsid variant 286 

V1512195 (blue bars, Fig. 4A and 4D) performed remarkably well in most cells, albeit we again 287 

noted some degree of donor dependency (e.g., in donor 171975, where it ranked second to 288 

last). In contrast, capsid variants V1613007, KPLMI-246, KPLMI-253, KPLMI-311, V1500812 289 

(all in gray) and V1502611 (pink bars) were frequently among the least efficient of all capsid 290 

variants, also with a few donor-specific exceptions (e.g., the good performance of capsids 291 

V1500812 and V1502611 in donor 171469, Fig. 4A). Besides, we measured a steady increase 292 

in luciferase transgene expression for all 16 capsids and all five donors from day 6 to 12 post-293 

transduction (data not shown), congruent with prior notions of AAV/HBoV1 kinetics in this cell 294 

culture model (24).  295 

Next, we compared transduction efficiencies at day 12 based on the presence of T590 (six 296 

variants) versus T590S (twelve variants) (Fig. 4B). We found no significant differences between 297 

the two groups in their transduction abilities, but observed trends in donors 171834, 171469 and 298 

171476, where variants with T590 had a slight advantage. Vice versa, the S590 variant tended 299 

to perform better in donors 171905 and 171975. Notably, as exemplified in Fig. 4C, we 300 

concurrently observed differences in the cellular composition of the pHAE cultures that might 301 
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have influenced the transduction efficiency and specificity of the HBoV1 variants. In particular, 302 

sample 171834 showed a much higher proportion of Mucin-positive goblet cells versus Tubulin-303 

positive ciliated cells, as compared to samples 171905 and 171975 where ciliated cells 304 

predominated. An overview of the differential efficiency of selected variants in each of the five 305 

pHAE cultures is shown in Fig. 4D. 306 

Finally, we separately tested the two HBoV1 variants that had yielded the lowest titers during 307 

vector production (Fig. 3C), KPLMI-30 and KPLMI-3503, in direct comparison to DQ000495 308 

(Fig. 4E). For this, we used pHAE derived from two donors, one from the group of five that we 309 

had also used above (171476), while the other was used only in this experiment (171427). 310 

Moreover, owing to the limiting vector yields, we had to reduce the MOI from 600 to 200, 311 

corresponding to 1×108 vg per pHAE filter. Consistently, we found that these two HBoV1 312 

variants mediated very low transduction that was 10- to 100-fold below the DQ000495 reference 313 

at all time points (Fig. 4E). Together, this implies that the multiple nucleotide and/or aa 314 

differences in these two capsids as compared to the HBoV1 reference (Fig. 3A-B and 315 

Supplementary Table 3) impact both, the ability to be produced as recombinant vector and to 316 

mediate robust transgene expression, at least in pHAE. 317 

Packaging and transduction efficiency of HBoV1 tyrosine mutants  318 

An alternative approach to identify HBoV capsids with improved properties that complements 319 

screening of natural HBoV variants is rational engineering of the viral capsid. To this end, the 320 

modification of surface-exposed tyrosine residues in the viral capsid is especially promising as 321 

these residues play important roles in assembly, ubiquitination and degradation, as well as in 322 

transcription and transduction of parvoviruses (30-36). Accordingly, we mutated six different 323 

tyrosine residues in the VP1 capsid protein to phenylalanine that we had originally predicted by 324 

structural modeling to be located on the HBoV1 capsid surface (Fig. 5A), namely, Y276, Y403, 325 

Y484, Y523, Y595 and Y657 (all VP1 aa numbering). To study the effect of each mutation on 326 
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particle assembly and transduction, we packaged two transgenes, yfp (yellow fluorescent 327 

protein) or Gluc, into the different capsid variants. All mutants yielded largely comparable vector 328 

amounts (data not shown), implying that none of the studied tyrosine mutations affects vector 329 

production. 330 

Next, to assess the ability of these mutants to transduce pHAE, they were added to the apical 331 

surface of transwells at a MOI of 2×104. This higher MOI (versus 600 before) was used as we 332 

expected a lower infectivity for at least some of the tyrosine mutants, and as we wanted to be 333 

able to measure all transduction efficiencies in the same experiment and under identical 334 

conditions. Transductions were performed in the presence or absence of proteasome inhibitors, 335 

to study whether the Y-to-F mutations had circumvented capsid ubiquitination and thereby 336 

alleviated HBoV1's dependency on proteasome inhibition. Interestingly, we found that 337 

transduction of two of the six mutants was impaired at all time points (day 3 to 14, Fig. 5B), 338 

namely, Y484 (~6.8-fold reduction compared to wild-type HBoV1) and Y595 (~4.5-fold 339 

reduction). In contrast, the other four mutants were indistinguishable from the wild-type control. 340 

Moreover, the Y484F mutation had actually increased the dependency of the cognate capsid on 341 

proteasome inhibitors, because this capsid was inert in their absence. In this respect, it differs 342 

from the Y595F mutant that showed a similarly reduced potency in the presence of proteasome 343 

inhibitors, but that, unlike the Y484F variant, remained active also without these inhibitors (albeit 344 

at reduced efficiency, akin to all other variants). 345 

Of note, after the completion of these experiments, the capsid structure of HBoV1 has been 346 

determined by cryo electron microscopy (37). The HBoV1 capsid structure revealed that of the 347 

six tyrosines that we studied here, only three are indeed located on the capsid surface, i.e., 348 

Y276, Y403 and Y595 (Fig. 5C). In addition, the hydroxyl group of Y276 is inaccessible for 349 

potential phosphorylation. In contrast, Y484, Y523, and Y657 are not exposed on the capsid 350 

surface. Most notably, mutation of Y484, which is located on the inside of the capsid, had 351 
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yielded the strongest phenotype, implying a mode of action that differs from the anticipated 352 

phosphorylation and ubiquitination (see Discussion).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        353 

Differential inhibition of HBoV1 capsid variants by human immunoglobulins 354 

To determine the effect of anti-HBoV1 antibodies on the functionality of the different HBoV1 355 

capsid variants, we first performed an Enzyme Immuno Assay (EIA; Fig. 6A). For this purpose, 356 

microtiter plate wells were coated with the different capsid variants (antigens) at four different 357 

dilutions (only 8- and 16-fold dilutions are shown, as they resulted in a linear signal). Next, the 358 

reactivity of a human serum pool positive for HBoV1 antibodies was measured. We detected 359 

small differences typically within 1.3 OD between the variants in their ability to bind HBoV1-360 

specific antibodies, except for GQ925675, which showed a 2- to 4-fold reduced binding. 361 

Surprisingly, for reasons as-of-yet-unknown, capsid variant VK11443 that differs only in one 362 

nucleotide from GQ925675 and has an identical aa composition did not show the same 363 

reduction in antibody binding. Also notable are the two capsid variants KPLMI-30 and KPLMI-364 

3503, which resulted in an OD of 3.10 and 0.10, respectively (at 8-fold dilution). Notably, the low 365 

viral titers of both KPLMI-30 and KPLM-3503 (close to the background) limit the ability of qPCR-366 

based analysis that requires encapsidated genomes to reliably estimate the amount of viral 367 

capsids. Thus, the slightly higher OD value measured for KPLMI-30 as compared to the other 368 

variants (differences between 0.72 and 2.54 ODs) might result from the technical challenge to 369 

quantify the proper amount of virus solution used in the EIA. The differential reactivity of these 370 

two variants with human antibodies is interesting in view of their strikingly reduced viral titers 371 

and transduction ability in pHAE (Fig. 3C and 4E, respectively). Based on the titer reduction, we 372 

speculated that these variants might have a defect either in assembly or genome packaging. To 373 

resolve these possibilities, we studied viral VP expression by Western blot analysis (Fig. 6B). All 374 

variants expressed VP1/VP2/VP3 proteins (without evidence for additional protein species) in 375 

the expected 1:1:10 stoichiometry, which shows that capsid protein expression is not limiting. 376 
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Thus, the absence of signal in the EIA for KPLMI-3503 viral particles implies that this variant 377 

might have an assembly defect. By contrast, the high signal for KPLMI-30 in combination with 378 

the low measured viral titers hints at an impairment in genome packaging. Notably, we do not 379 

rule out the possibility that subtle differences in VP protein composition not detected by Western 380 

blotting may have contributed to the variations in transduction or packaging ability, a theory that  381 

could be studied with other, more sensitive methods. Besides, we did not detect variations in the 382 

length of the encapsidated vector DNAs (data not shown), implying that genome integrity is not 383 

responsible for the differences in titer or transduction.   384 

Concerning the T590S variation, the EIA assay did not reveal obvious differences between the 385 

T and S groups in their binding to human anti-HBoV1 antibodies, which implies that aa position 386 

590 does not confer a differential reactivity to HBoV1 capsid antibodies in human sera. 387 

It is known for AAV vectors that antibody binding does not always result in neutralization of virus 388 

transduction (38). To test whether this applies to HBoV1 as well and to compare our different 389 

variants in a functional assay (transduction ability), we performed in vitro neutralization assays 390 

using commercially available, pooled human immunoglobulins (IVIg). This mix of IgG antibodies 391 

from healthy individuals has previously been shown to potently reduce the activity of the 392 

standard GQ925675 vector, in line with its large seroprevalence in the human population (24).  393 

Due to the limited availability of pHAE, we selected seven HBoV1 variants for the assay with 394 

equal T/S590 distribution, including the GQ925675 and DQ000495 reference strains. To this 395 

end, we mixed 5×109 vg per capsid variant (corresponding to a MOI of 1×104 vg per well) with 396 

six different IVIg concentrations and incubated these mixtures for 1 h at 37°C, before adding 397 

them to pHAE from two different donors (Fig. 6C). These IVIg concentrations were shown in 398 

pilot studies to result in a reduction or complete inhibition of transduction with GQ925675 (data 399 

not shown). Comparison of Gluc expression from the different HBoV1 variants at day 5 and 10 400 

showed no obvious differences between the two groups (T or S at position 590) in their 401 
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transduction abilities in the presence or absence of IVIg, which supports the previous notion that 402 

this variation does not confer increased resistance to neutralizing antibodies. Still, contradicting 403 

this trend is the KPLGr2 variant, which differs only in aa position 590 from KPLGr1 but shows a 404 

higher resistance to IVIg, despite its stronger binding to antibodies in the EIA assay (Fig. 6A). 405 

Analysis of evolutionary selection pressures on HBoV1  406 

Intrigued by our finding that the natural T/S590 variation has a profound impact on viral titer, we 407 

asked whether this site was subject to a positive selection pressure. To address this question, 408 

we used several methodologies comprising MEME, SLAC, FEL and FUBAR (see Methods). 409 

Indeed, we found one site (using MEME) under "positive selection" (moderately significant with 410 

p=0.51), namely, the abovementioned aa 590 (Fig. 7A). However, a positive selection of T/S590 411 

was not supported by the other methods used, which showed a neutral selection pressure at 412 

this position. Thus, albeit it is implied by the MEME results, we cannot firmly conclude that the 413 

observed substitution at this site has an impact on intra-species transmission and adaptation of 414 

HBoV1. 415 

Finally, we analyzed the conservation of the aa 590 residue in the VR-VIIIB by comparing the aa 416 

composition of this region to other primate BoV (Fig. 7B). Notably, the Gorilla bocavirus (GBoV) 417 

described by Kapoor et al. (39) is genetically most closely related to HBoV1 (on both, the 418 

nucleotide and amino acid level). Accordingly, the VR-VIIIB of HBoV1 is also most homologous 419 

to the one in GBoV, with both carrying a threonine at position 590, in contrast to an asparagine 420 

in HBoV2-4. Also interesting in this context is the profound ability of GBoV to transduce human 421 

airway epithelial cells that we have reported recently (24). Together, this may hint towards an 422 

inter-species transmission of HBoV1/GBoV.  423 

 424 

 425 
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DISCUSSION 426 

The present work was fueled by a string of recent publications showcasing the great potential of 427 

recombinant gene transfer vectors derived by packaging of AAV vector genomes into HBoV1 428 

capsids (22, 24, 25, 40). Most recently, these reports have inspired us to engineer similar 429 

vectors based on alternative BoV, i.e., HBoV2-4 and Gorilla Bocavirus (GBoV), leading to our 430 

discovery of their favorable properties for gene transfer into various primary human cells (24). At 431 

the same time, this work by others and us has revealed a series of gaps in our current 432 

understanding of fundamental BoV biology, whose resolution will not only benefit our knowledge 433 

of the bocaviral life cycle but also promises to foster the development of next-generation BoV 434 

gene therapy vectors.   435 

In the first part of this work, we aimed to study the natural variation in HBoV1 isolates. 436 

Specifically, we focused our attention on the capsid (vp) ORF, which is the determinant of virus 437 

tropism and the subject of extensive research in viral vector development. Therefore, we 438 

amplified and sequenced 29 full-length vp sequences from patient samples collected in 439 

Heidelberg and Cologne. Despite the high degree of sequence conservation among the HBoV1 440 

isolates, which is in line with previous reports (41), we detected an interesting hotspot for 441 

variation in VP1 at aa position 590 in around 50% of analyzed patient samples. This change 442 

results from a conversion of two nucleotides (5'-AA-3') at positions 1767-1768 in vp1 to 5'-CT-3'. 443 

Interestingly, a previous study by Principi and co-workers, who analyzed samples from Milan 444 

(Italy), also showed this high prevalence of the T590S variation (27). The additional collection of 445 

several samples from the same individual over time allowed us to also follow the course of 446 

infection in two patients. Surprisingly, we found dynamic changes at the 590 aa position, starting 447 

with a clear abundance of threonine that was gradually replaced by a serine (see Fig. 2C-D). 448 

The emergence and persistence of the T590S switch could be explained by different events: (i) 449 

a de-novo change of two adjacent nucleotides during virus evolution, which is, however, 450 
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unexpected in view of the estimated mutation rate of primate bocaviruses (9×10-4 451 

mutations/site/year) (42, 43), or (ii), as previously proposed by Martin and colleagues (44), a 452 

secondary infection with another strain, which might have a replication or immunological 453 

advantage and thus dominated over time. Another, rather rare scenario also reported in the 454 

above-mentioned study is the co-infection with two strains during the same primary event that 455 

have different kinetics or immunoreactivity. To conclusively identify the proper scenario, deep 456 

sequencing analysis of samples from different time points has to be performed to detect even 457 

minor quantities of specific variants. Interestingly, as opposed to the study by Principi et al., the 458 

T590S change was concomitant with a decrease in overall virus load (27). However, these 459 

varying study outcomes may have resulted from different time and end points in sample 460 

collection. At this point, it thus remains equally possible that the observed decrease at the 461 

endpoint of sample collection truly reflects a biological property of T590S or that a secondary 462 

infection has happened in these patients. Consequently, a firm conclusion regarding the 463 

persistence or spread of 590S versus T590 variants and on their possible positive selection 464 

cannot be drawn until more samples have been collected and analyzed during symptomatic and 465 

asymptomatic periods.   466 

In addition to the prominent T590S mutation, we detected additional aa changes resulting from 467 

single-nucleotide polymorphisms (SNP): D to N (aa position 86), S to N (aa position 474) and a 468 

dominant A-to-T mutation (aa position 149) in all variants (as compared to the DQ000495 469 

reference strain). To experimentally unravel the role of these naturally occurring SNPs or 470 

singletons in the vp ORF on the producibility and transduction ability of HBoV1, independent of 471 

the exact collection time points and sample types, we made use of a previously established 472 

recombinant vector system in which rAAV genomes are packaged into BoV capsids (22, 24). To 473 

this end, we selected variants from patient samples with approximately equal T/S distribution 474 

(Fig. 3A-B) and packaged a rAAV-Gluc vector into each capsid. The high aa identity of the 475 
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HBoV1 variants in our study prompted us to include additional synthetic mutants into our screen 476 

that either (i) recapitulate several natural HBoV1 variants reported by Principi et al. (27) or (ii) 477 

were rationally designed, based on a previously published HBoV1 structure by Gurda et al. (45). 478 

During packaging of the rAAV-Gluc genomes into the different HBoV1 vp variants, we gained 479 

significantly higher titers with the ones harboring a serine at aa position 590 (see Fig. 3C-D), 480 

which was surprising as it is diametrically opposed to the decrease observed in the patient 481 

material. Hence, these findings allow us to conclude that the decrease in 590S viral load in 482 

patient material does not result from a reduced ability to produce viral progeny (Fig. 2B). 483 

Moreover, the consistently higher viral titers obtained using 590S variants indicate a direct effect 484 

of the variation on capsid assembly and/or genome packaging. Interesting in this context and 485 

supporting this hypothesis is that T/S 590 lies in the capsid VR-VIIIB (also called “HI loop”, Fig. 486 

8A-B). This region belongs to the surface-exposed, hypervariable regions and was linked to 487 

particle assembly and genome packaging in AAV (46), hinting at a similar function in the BoV 488 

context. In addition to its role in particle assembly, the VR-VIIIB is crucial for the externalization 489 

of the VP1u region during endosomal escape and thus contributes to particle infectivity (46). 490 

Accordingly, to test whether the vp variations studied in this work affected the transduction 491 

ability of HBoV1, pHAE grown on transwells were transduced from the apical side with an equal 492 

number of viral particles. Transgene expression was followed over time by measuring the 493 

secreted reporter Gluc in the medium. Intriguingly, nearly all tested variants displayed high 494 

transduction abilities (except for KPLMI-3503, KPLMI-30, HBoV1 Y595F and HBoV1 Y484F). 495 

Moreover, their activity was dependent on the transwell composition and thus varied among 496 

pHAE cultures, consistent with our prior observations with various primate BoV vectors (24). 497 

When we compared transduction abilities in the context of the T590S variation, we did not 498 

observe significant differences between the two groups. This is in line with a previous study 499 

using recombinant AAVs, which showed that swapping of the complete HI loop between 500 

serotypes with high sequence identity affects their producibility but not transduction ability (46). 501 
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Hence, we concluded that the T/S variation affects the virus titers by playing a role in particle 502 

assembly and/or genome packaging but does not determine infectivity. By contrast, mutation of 503 

the tyrosine residue to phenylalanine at aa position 595, which flanks the VR-VIIIB in the HBoV1 504 

capsid, resulted in a 4.5-fold reduction in virus infectivity. Importantly, this residue is highly 505 

conserved among primate BoVs except for HBoV4, where it can be naturally replaced by a 506 

phenylalanine (e.g., HBoV4 strain FJ973561). 507 

An even stronger phenotype (6.8-fold reduction in infectivity) was obtained when Y484, located 508 

between VR-VI and VR-VII, was mutated to a phenylalanine. This residue lies inside the capsid 509 

and is also highly conserved among primate BoVs, indicating an important role in the BoV 510 

infection pathway, most likely perhaps for capsid assembly. Further analysis of Y484 in the wild-511 

type HBoV1 capsid structure showed a potential hydrogen bond of the side chain’s hydroxyl 512 

group to the backbone (A435) of VR-V situated above this residue. Thus, an intriguing working 513 

hypothesis for future work is that the removal of the hydroxyl group by mutation to phenylalanine 514 

could alter the conformation of VR-V, which is a potential determinant of host tropism, and result 515 

in reduced virus infectivity or vector transduction efficiency. 516 

The best performers in our transduction assays were DQ000495 and HBoV1 Y523F, which 517 

consistently mediated comparable or higher transduction than the standard BoV vector 518 

GQ925675 and thus represent promising candidates for a future application as viral vectors. In 519 

contrast to the favorable effect of S590, two of the reconstructed mutants (KPLMI-30 and 520 

KPLMI-3503) resulted in 64- and 239-fold lower average viral titers, respectively, despite the 521 

presence of the S590 residue. The EIA assay revealed the presence of assembled particles for 522 

KPLMI-30 but not KPLMI-3503, despite the presence of free VP proteins (compare Fig. 6A and 523 

B), which implies a defect in genome packaging, particle assembly and/or antibody recognition, 524 

respectively. This hypothesis is supported by the localization of the different residues in both 525 

variants. In KPLMI-30, the two residues SA (at aa 396-397) are located on the capsid surface at 526 
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the 5-fold canyon (Fig. 8C-D), i.e., a region surrounding the 5-fold axis channel, which serves as 527 

a portal for viral genome packaging (37, 47). By contrast, in KPLMI-3503, aa residues 534-536 528 

(KPD) are on the inside of the capsid between the HI loop and VR-VIII that is located on the 529 

sides of the 3-fold protrusions, i.e., the determinants of antibody recognition and infectivity in 530 

other parvoviruses (37) (Fig. 8E-F). Thus, we speculate that these residues might have led to 531 

structural changes that either negatively influenced capsid assembly or interfered with antibody 532 

binding. The latter would, however, not explain the 239-fold reduced viral titers. Consequently, 533 

at this point, the exact mechanisms underlying our observations remain unknown and our 534 

assumptions require experimental validation. For instance, to unanimously determine whether 535 

aa 534-536 affect particle assembly or impact genome packaging, a different antibody 536 

recognizing a conformational epitope should be used in future experiments. Finally, it is 537 

interesting that the transduction ability of both mutants was severely compromised in pHAE (Fig. 538 

4E), which seems to be at odds with the high titers (~5×109 vg/ml) at which these mutants were 539 

detected in the original report (27). Here, it is important to mention again that only nucleotide 540 

changes that cause an aa change were transferred into our expression constructs. Thus, the 541 

effect of silent mutations that might have led to changes in different, as-of-yet unknown ORFs 542 

within vp2 cannot be assessed in this setting. 543 

In the last part of this work, we asked whether the T590S variation affects the serological 544 

reactivity of the HBoV1 capsid, which might have resulted in the emergence and/or persistence 545 

of this mutation in the clinical samples. This question is also important for the application of viral 546 

vectors in gene therapy, where pre-existing neutralizing antibodies significantly lower the 547 

therapeutic benefit. To this end, we pursued two independent approaches: (i) EIA to assess the 548 

binding of antibodies in HBoV1-positive sera to the HBoV1 vp variants, and (ii) a functional 549 

assay in which the impact of a pool of human antibodies (IVIg) on the transduction abilities of 550 

the HBoV1 variants was studied.  551 
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Interestingly, we found only small differences between the variants in the EIA, except for the 552 

GQ925675 variant that showed 2- to 4-fold reduced binding to serum antibodies (Fig. 6A). This, 553 

however, did not directly correlate with the results from the transduction assays, where 554 

GQ925675 had no benefit compared to the other tested variants (Fig. 6C). This discrepancy 555 

was also observed in previous reports using AAV vectors and indicated that antibody binding is 556 

not always linked to particle functionality (38). The in vitro neutralization assay also did not 557 

reveal any correlation between the T/S590 variation and the susceptibility of the HBoV1 capsid 558 

to neutralization by pooled human IgG. One exception is the Gr2 variant, which was more 559 

resistant to neutralization as compared to the other variants and which differed from Gr1 only in 560 

the presence of S590. This led us to the conclusion that T/S590 mostly affects the efficiency of 561 

virus production, yet it remains to be determined how this variation affects virus spread or 562 

latency.  563 

The higher resistance of the KPLGr2 variant in this work is remarkable and would be of 564 

advantage for the future application of this variant as a viral vector. Thus, it would be now 565 

interesting to (i) validate the immune-escaping ability of KPLGr2 by testing its reactivity to 566 

different patient sera, and (ii) to include other variants that have the same aa sequence as 567 

KPLGr2, namely, V1512195, V1502611 and V1500812 but that differ substantially in their 568 

nucleotide composition. These variations have led to different transduction abilities in pHAE 569 

(Fig. 4A and 4D), which might be a result of alternative, as-of-yet undiscovered ORFs that could 570 

also influence the immunoreactivity. Thus, it should be highly rewarding to additionally study the 571 

abovementioned variants and the other BoV capsids reported in this work as it will further enrich 572 

our knowledge of bocaparvovirus biology and support efforts to breed optimal viral vectors for 573 

human gene therapy. 574 

 575 

 576 
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MATERIALS AND METHODS 577 

Plasmids and cloning procedures. The HBoV1 helper plasmid pCMVNS*Cap (GenBank: 578 

GQ925675) was previously described (9, 48) and kindly provided by Ziying Yan. The DQ000495 579 

cap sequence was ordered as gene block from IDT (Leuven, Belgium). The gene block and 580 

HBoV1 cap sequences from clinical samples were amplified using primers #1 and #2 in 581 

Supplementary Table 2 (both with overhangs containing BsmBI restriction sites). The PCR 582 

product was cloned using a Golden Gate reaction into a previously described acceptor plasmid 583 

(pCMVNS*ΔVP-2×BsmBI) (24) lacking the cap sequence.  584 

All other synthetic variants reported in this work were generated by introducing mutations using 585 

overlap-extension (OE-)PCR as previously described (49). For each change, two PCR reactions 586 

were performed using overlapping primers (forward and reverse) containing the mutation(s) of 587 

interest (#5 to #36 in Supplementary Table 2) and two common external primers (#3 and #4 in 588 

Supplementary Table 2) with restriction sites (BstBI / EagI) that allow for the cloning of the end 589 

products into pCMVNS*Cap (see Supplementary Tables 3 and 4 for an overview of the 590 

nucleotide changes introduced).  591 

 592 

Phylogenetic analysis. Phylogenetic analysis of HBoV1 cap sequences was performed in 593 

MEGA7.0.26 (Pennsylvania State University, PA, USA). The evolutionary history was inferred 594 

using the Maximum Likelihood method. The percentage of replicate trees in which the 595 

associated taxa clustered together in the bootstrap test (500 replicates) are shown next to the 596 

branches. Only bootstrap values above 70% are displayed. 597 

 598 

Cell culture and patient material. HEK293T were grown in Dulbecco’s Modified Eagle’s 599 

Medium (DMEM) with GlutaMAXTM (Thermo Fisher Scientific, Waltham, MA, USA), supplied 600 

with 10% fetal bovine serum (FBS) and 100 U/ml penicillin-streptomycin (both Merck/Sigma-601 

https://www.google.com/search?newwindow=1&client=firefox-b-ab&q=Waltham+(Massachusetts)&stick=H4sIAAAAAAAAAOPgE-LSz9U3MCooMTBJU-IAsTOqjE21tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcUAAxikqkQAAAA&sa=X&ved=2ahUKEwjYx6ukt9HeAhWKJcAKHQvsDp8QmxMoATASegQIBhAH
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Aldrich, Darmstadt, Germany). Polarized human airway epithelial cells were generated as 602 

previously described (24) from resected bronchial tissue and were obtained from Lung Biobank 603 

Heidelberg (member of the German Center for Lung Research, DZL), at University Hospital 604 

Heidelberg, Germany. The cells were grown on ThinCerts (Greiner Bio-One, Frickenhausen, 605 

Germany) and differentiated at an air-liquid interface in PneumaCult ALI Basal medium 606 

supplemented with PneumaCult ALI 10× Supplement (both from StemCell, Vancouver, 607 

Canada).  608 

 609 

Recombinant virus production. Pseudotyped BoV/AAV vectors were produced in HEK293T 610 

cells as previously described (24) using a triple plasmid transfection of (i) one of the BoV helper 611 

plasmids, (ii) a self-complementary (sc)AAV plasmid encoding Gluc (1.912 kb insert size) and 612 

(iii) pDG∆VP, a plasmid encoding rep from AAV2 and adenovirus helper genes (21). Cells were 613 

harvested 72 h post-transfection and the crude cell lysate was processed for iodixanol gradient 614 

centrifugation as previously described (24, 50). The virus-containing 40% iodixanol fraction was 615 

pulled from the gradient, mixed with 15 mL PBS and applied to an Amicon Ultra-15 (Merck, 616 

Darmstadt, Germany) centrifugal filter unit (100,000 nominal molecular weight limit). Several 617 

centrifugation steps at 500-1,000×g allowed for buffer exchange and concentration of viral 618 

preparations.  619 

 620 

qPCR analysis of patient samples and recombinant virus titers. To determine viral titers, 621 

alkaline lysis was performed by mixing 10 µL of each virus stock with 10 µL TE buffer and 20 µL 622 

2 M NaOH. The mixture was heated up to 56ºC for 30 min and then neutralized using 38 µL of 1 623 

M HCl. Next, a 1:1,000 working solution was prepared and 5 µL were used in a TaqMan real-624 

time PCR reaction as previously described (50), using the 2× SensiMix II Probe Kit (Bioline, 625 

Luckenwalde, Germany) and a probe binding in the promoter region (see Supplementary Table 626 

5 for probe/primer combinations). 627 



26 
 

To determine the viral load in patient samples, 2.5 µL of extracted DNA (QIAsymphony kit; 628 

Qiagen, Hilden, Germany), were directly mixed with 22.5 µL qPCR mix containing: (i) 12.5 µL 629 

SensiMix SYBR No-Rox Kit (Bioline), (ii) 0.25 µL of each forward and reverse primer 630 

(Supplementary Table 5) and (iii) 9.5 µL H2O. The qPCR reaction were measured in duplicates 631 

using a Rotor-Gene Q cycler (Qiagen) and the following conditions: Initial activation (95ºC, 10 632 

s), followed by 40 cycles of (i) denaturation (95ºC, 15 s), (ii) annealing (58ºC, 20 s) and (iii) 633 

extension (72ºC, 20 s). To ensure the detection of different HBoV1 strains, the forward and 634 

reverse primers were designed to bind in the relatively constant promoter region. 635 

 636 

Gaussia luciferase assay. Gluc activity was determined in the cell culture medium as 637 

previously described (24). Briefly, 20 µL of the cell medium were incubated with 100 µL assay 638 

buffer supplied with Coelenterazine (PJK, Kleinblittersdorf, Germany) at a final dilution of 11.7 639 

µM. Gluc activity was detected in a GloMax96 microplate luminometer equipped with an 640 

automatic injector (Promega, Madison, WI, USA). 641 

 642 

Enzyme immunoassay (EIA). HBoV1 variants selected from the transduction experiments 643 

were tested for their reactivity to human serum pools using an in-house IgG EIA. Therefore, 96-644 

well microtiter plates were coated overnight at 4°C in duplicates with 4-, 8-, 16- and 32-fold 645 

diluted (in PBS) bocaviral stocks. Then, plates were coated with diluent LOY-X (Labsystems 646 

Diagnostics, Vantaa, Finland) three times for 10 min each.  A HBoV1-IgG-positive serum pool 647 

(1:200) diluted in RED buffer (Kaivogen, Turku, Finland) was pipetted into each well and the 648 

plate was incubated at 37°C for 1 h. As control, a 1:200 dilution of a HBoV1-IgG-negative serum 649 

pool was used. After five washes with 0.05% Tween-20 in PBS, an HRP-(horseradish 650 

peroxidase-) conjugated anti-human IgG (1:2,000; DAKO/Agilent, Glostrup, Denmark) diluted in 651 

LOY-X was applied. For the detection of HRP-labeled antibodies, TMB substrate (Merck/Sigma-652 

Aldrich) was added and incubated at room temperature for 20 min. Then, H2SO4 (0.5 M) was 653 



27 
 

added to stop the reaction, and absorbances were measured at 450 nm using a MultiScan EX 654 

(Thermo Fischer Scientific). 655 

 656 

Western blot analysis. Western blotting was performed as previously described (49). Briefly, 657 

5×105 HEK293T cells were transfected with 2 µg of BoV helper plasmid. Three days post-658 

transfection, the cells were harvested in 300 µL PBS, mixed with an equal volume of 2× SDS 659 

sample loading buffer and boiled for 5 min at 95ºC. The cell lysates were then centrifuged at 660 

13,000 rpm and 10 µL from each lysate were separated on 8% SDS-PAGE gels (Biorad, 661 

Hercules, CA, USA). Next, the proteins were transferred to a nitrocellulose membrane (NeoLab, 662 

Heidelberg, Germany) using semi-dry transfer. For detection of the three capsid proteins (VP1, 663 

VP2 and VP3), an in-house produced rabbit polyclonal anti-HBoV1 antibody was used at a 664 

1:1,000 dilution. To produce the anti-HBoV1 antibody, rabbits were inoculated with HBoV1 VP3-665 

VLPs (virus-like particles) that were produced in a baculovirus expression system. Serum was 666 

obtained on day 120 and tested for HBoV1 IgG by EIA. Immunization of rabbits was performed 667 

by GenScript (Piscataway Township, NJ, USA). For further details, see reference (51).  668 

For detection of the primary antibody, a HRP-conjugated secondary donkey anti-rabbit antibody 669 

(#NA934V; GE Healthcare, Chicago, IL, USA) was used (1:10,000). To visualize protein bands, 670 

the Lightning Plus-ECL reagent (PerkinElmer, Waltham, MA, USA) was added and a 671 

chemiluminescence imager (Intas ChemoStar, Göttingen, Germany) was used to detect the 672 

signal.  673 

 674 

Transduction of pHAE in the presence or absence of IVIgs. Primary HAE were incubated 675 

from the apical side with the different pseudotyped HBoV1 variants at a MOI of 1×104. To 676 

enhance transduction, two proteasome inhibitors were applied to the medium on the basolateral 677 

side, as previously described (22, 24), namely, 5 µM doxorubicin hydrochloride (Santa Cruz 678 
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Biotechnology, Dellas, TX, USA) and 40 µM ALLN calpain Inhibitor I (G-Biosciences, St. Louis, 679 

MO, USA). After 16 h, the virus was removed from the apical compartment and the medium 680 

replaced with fresh medium without inhibitors.  681 

To perform transductions in the presence of IVIg (Kiovig; Baxalta, Bannockburn, IL, USA), the 682 

IVIg solution was diluted to working concentrations of 2, 10, 20, 40, 60 or 200 mg/dl. Next, equal 683 

volumes of virus and IVIg solution were mixed and placed at 37ºC for 1 h. Positive (PBS, 684 

+HBoV1) or negative (+IVIg, -HBoV1) controls for transduction were also included. Transgene 685 

expression was measured at 5 or 10 days post-transduction. 686 

 687 

Flow cytometry analysis. Characterization of pHAE cell composition using flow cytometry was 688 

performed as previously described (22, 24). Briefly, to stain goblet and cilitated cells, the 689 

following primary antibodies were used: goblet cell marker MUC5A/C (#ab3649; Abcam, 690 

Cambridge, UK) diluted 1:100 and ciliated cell marker β-Tubulin IV (#T7941; Merck/Sigma-691 

Aldrich) diluted 1:100. Primary antibodies were incubated for 1 h at 4°C, followed by treatment 692 

with secondary anti-mouse antibody (AF-647 goat anti-mouse #A21235, Thermo Fisher 693 

Scientific) for 30 min at room temperature. Cells were measured on a FACSVerse (BD 694 

Biosciences, Franklin Lakes, NJ, USA) and analysis was performed using Flowing Software 695 

(version 2.5.1; Turku Centre for Biotechnology, Turku, Finland). Only living cells were used for 696 

the analysis. 697 

 698 

Statistical analysis. The statistical analysis was performed in PRISM Version 8.0 (GraphPad 699 

Software Inc.; https://www.graphpad.com). Two data sets in Fig. 2B or 3D were compared using 700 

an unpaired two-tailed t-test analysis (for 2B, Welch’s correction was applied to account for 701 

highly significant differences in variances). The data sets in Fig. 4B were analyzed using a 702 

multiple t-test. Statistical significance was determined using the Holm-Sidak method, with alpha 703 
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= 0.05. Computations assume that all rows are samples from populations with the same scatter 704 

(SD). In Fig. 4D, a one-way ANOVA with Dunnett’s test was used to compare each data set with 705 

the reference (DQ000495.1). Significance is denoted by asterisks above the SD or range bar. *, 706 

p < 0.05, **, p < 0.01, ***, p < 0.001, ****, p < 0.0001, ns, non-significant. 707 

 708 

Structural analysis. For the structural analysis, the model of the HBoV1 VP monomer (PDB-ID: 709 

5URF) and the HBoV1 capsid 60-mer was downloaded from the VIPERdb online server 710 

(http://viperdb.scripps.edu) (52). Surface exposed tyrosines were identified by generation of a 711 

gray surface representation of the capsid 60-mer followed by the coloration of tyrosine residues 712 

in Chimera (53). Similarly, the location of specific residues on the capsid surface such as serine 713 

590 were identified. The depiction of the ribbon diagrams of the HBoV1 VP monomer were 714 

generated using the ‘smooth loop’ option in PyMol (54).  715 

 716 

Selective pressure analysis. Tests for negative or positive selections were conducted on the 717 

Datamonkey server (55). Methods used involve single-likelihood ancestor (SLAC) (56), the 718 

fixed-effects likelihood (FEL) (56), the fast, unconstrained Bayesian approximation (FUBAR) 719 

(57) and the mixed effects model of evolution (MEME) (58). To reduce the probability of false-720 

positive events, a p-value threshold of 0.1 in SLAC, FEL and MEME and a FUBAR posterior 721 

probability threshold of 0.9 were used to identify sites for selection. 722 

 723 

Ethical approval. This study was carried out in accordance with the recommendations of the 724 

University Hospital Heidelberg with written informed consent from all subjects in accordance 725 

with the Declaration of Helsinki. All samples were received and maintained in an anonymized 726 

manner. The protocol was approved by the ethics commission at University Hospital Heidelberg 727 

under the protocol numbers S-270/2001 (collection of surgical material for lung research) and S-728 
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782/2018 (amplification of BoV sequences from patient material and application of derived BoV 729 

vectors in pHAE). 730 
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 930 

 931 

FIGURE LEGENDS 932 

FIG 1 Isolation and sequencing of natural HBoV1 capsid variants. (A) Representative agarose 933 

gel showing the results of PCR amplification of HBoV1 capsid genes in patient samples. The 934 

expected size of the full-length PCR amplicon was 2016 bp. POS, positive control (HBoV1 935 

helper plasmid); NEG, negative control (H2O). (B-C) Nucleotide (B) and protein (C) sequences 936 

of the HBoV1 capsid variants shown on the left in each panel. The second column depicts the 937 

number of nucleotide (B) or aa (C) differences as compared to variant DQ000495 (shown at the 938 

top). The numbers above each column have to be read vertically and indicate the position of 939 

each nucleotide (B) or aa (C) in the HBoV1 capsid gene or protein (VP1), respectively. A dot 940 

indicates no change. The four colors highlight the corresponding nucleotides and AA in the two 941 

panels. (D) Phylogenetic tree of the shown HBoV1 capsid variants derived by applying 942 
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maximum-likelihood methodology and 500 bootstrap repeats. Bootstrap repeats with a support 943 

of over 60% are shown at the nodes. HBoV2 (GenBank NC012042), HBoV3 (NC012564), 944 

HBoV4 (NC012729), Bovine Parvovirus (NC001540) and Canine Minute Virus (NC004442) 945 

were defined as outgroup. Capsid variants that resulted from this work are marked with a dot. 946 

 947 

FIG 2 Correlation of HBoV1 capsid sequence and viral load in patient material. (A) Results of 948 

qPCR titration of viral loads in 39 different patient samples. Shown is the median value (3.91 × 949 

106 vg/mL). (B) Correlation of aa at position 590 (threonine or serine) with viral load in 31 950 

selected (see main text for criteria) samples. Shown are means plus range. ns, non-significant. 951 

(C) Sequencing results of selected regions of the HBoV1 capsid in material taken from patient A 952 

(sputum and tracheal secretions) at the four indicated time points (total collection period was 953 

about 15 weeks). Also shown are the corresponding viral loads. Letters and colors indicate the 954 

aa or nucleotide at each position (green = adenine, blue = cytosine, black = guanine, red = 955 

thymine). (D) Same as panel C, but data for patient B and material (tracheal secretions) 956 

collected over a period of three weeks. (E) Viral loads measured for patients A and B (vg/mL) 957 

and shown in panels (C) and (D) are plotted (Y-axis) against the measurement time-points 958 

(days; x-axis). 959 

 960 

FIG 3 Selection and production of recombinant HBoV1 capsid variants. (A-B) Nucleotide (A) 961 

and protein (B) sequences of the 18 HBoV1 capsid variants shown on the left in each panel. 962 

The second column depicts the number of nucleotide (A) or aa (B) differences as compared to 963 

variant DQ000495 (shown at the top). The numbers above each column have to be read 964 

vertically and indicate the position of each nucleotide (A) or aa (B) in the HBoV1 capsid gene or 965 

protein (VP1), respectively. A dot indicates no change. The colors highlight the corresponding 966 

nucleotides and aa in the two panels. Panel B also shows the viral loads that were measured for 967 

each of the corresponding patient samples. Values marked with an asterisk were taken from 968 



36 
 

Principi et al. 2015 (27) and rounded. (C) Vector titers (means ± SD) were determined by qPCR 969 

for the shown 18 HBoV1 variants (each produced in nine 15 cm2 plates and purified). All 970 

titrations were performed twice except for those marked with an asterisk that were performed 971 

once. The dotted line represents the average value of 1.1×1011 vg/ml. Colored bars represent 972 

randomly chosen candidates that are highlighted in the next section of this work. (D) Same 973 

results as in panel C but sorted by the presence of a threonine (n=6) or serine (n=12) at position 974 

590. Shown are means ± SD. ***, p < 0.001 (unpaired t-test).   975 

 976 

FIG 4 Functional characterization of HBoV1 variants. (A) The indicated HBoV1 variants were 977 

tested for their transduction abilities in pHAE derived from five different patients (#171834 to 978 

#171476). To this end, a rAAV-Gluc genome was packaged into each HBoV1 capsid and pHAE 979 

were transduced apically at a MOI of 600. Gluc activity (means ± SD) was measured in the 980 

medium 12 days post-transduction and plotted on the y-axis as arbitrary light units (ALU). 981 

Colored bars represent candidates shown in Fig. 3C and are intended to facilitate comparison of 982 

candidates between pHAE derived from different patients. (B) Same results as in panel C but 983 

sorted by the presence of a threonine (n=6, 2 transwells each) or serine (n=12, 2 transwells 984 

each) at position 590. Shown are means ± SD. ns, non-significant (multiple t-test). (C) Flow 985 

cytometry analysis of untransduced pHAE derived from the indicated patient samples (n=2 986 

independent transwells per patient). Cells were stained for cell type-specific markers, i.e., ß-987 

Tubulin IV (ciliated cells) and MUC5AC (goblet cells). Blue areas show the percentages of 988 

positive cells for the indicated markers. (D) Side-by-side comparison of selected HBoV1 variants 989 

highlighted in Fig. 3C and 4A. Shown is their transduction ability in pHAE derived from different 990 

patients (indicated by the numbers below the x-axis). Transduction efficiency was estimated 991 

from the Gluc reporter activity in the medium, which is plotted as ALU on the y-axis (mean ± 992 

SD). *, p < 0.05, **, p < 0.01, ***, p < 0.001, ****, p < 0.0001, ns, non-significant (one-way 993 

ANOVA). (E) Transduction of pHAE with the shown HBoV1 variants at a MOI of 200. Gluc 994 
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activity (means ± SD) was measured in the medium 3, 9 and 12 days post-transduction and 995 

plotted on the y-axis as ALU. NEG, negative control (untransduced cells). 996 

                                                                                                                                               997 

FIG 5 Synthetic tyrosine mutants of the HBoV1 capsid and their transduction properties. (A) 998 

Shown tyrosine residues (Y) were mutated to phenylalanines (F). Numbers indicate the position 999 

of the aa in VP1. Underlined nucleotides represent mutated residues that result in the 1000 

corresponding aa change. (B) Gluc activity measured at the indicated time points. pHAE were 1001 

transduced with the different tyrosine HBoV1 mutants from panel (A) at a MOI of 2×104 in the 1002 

presence (+) or absence (-) of proteasome inhibitors. N, negative control (untransduced cells); 1003 

wt, wild-type HBoV1 capsid (positive control). The dotted line represents the assay background. 1004 

(C) HBoV1 capsid surface representation with surface-exposed tyrosine residues highlighted in 1005 

green and the hydroxyl group colored in red. In variants with an asterisk, the hydroxyl group is 1006 

partially inaccessible. This image was generated using Chimera. 1007 

 1008 

FIG 6 Analysis of the immunoreactivity of HBoV1 capsid variants. (A) EIA using pooled human 1009 

sera positive for HBoV1. Iodixanol-purified viral stocks (adjusted to an average of 5×1010 vg/mL) 1010 

of the indicated HBoV1 capsid variants were used to coat the wells of a microtiter plate (8- and 1011 

16-fold dilutions). EIA absorbance values (optical density; OD) are plotted on the y-axis. (B) 1012 

Western blot analysis of the variants shown in panel (A). HEK293T cells were transfected with 1013 

the different HBoV1 plasmids to analyze the expression of the three capsid proteins VP1, VP2 1014 

and VP3. (C) In vitro neutralization assay using commercially available human immunoglobulins 1015 

(IVIg). Gluc-expressing vectors were pre-incubated with the indicated IVIg concentrations for 1 h 1016 

at 37°C and then used to apically transduce pHAE at a MOI of 1×104 (5×109 vg per well). All 1017 

assays were performed in duplicates. Shown are mean Gluc activity levels (light units) plus 1018 

range measured at days 5 and 10 post-transduction.  1019 

 1020 



38 
 

FIG 7 Selection pressure acting on the intra-host level and comparison of the inter-host genetic 1021 

diversity of the VR-VIIIB. (A) Positive or negative selection pressure acting on the vp codons of 1022 

the HBoV1 strains in this study. MEME: mixed effects model of evolution; SLAC: single-1023 

likelihood ancestor; FUBAR: fast unconstrained Bayesian approximation methods; FEL: fixed-1024 

effects likelihood. (B) Amino acid 590 variation among different primate bocaviruses. 1025 

 1026 

FIG 8 Structural representation of the HBoV1 T590S variant (GQ925675) as well as of the 1027 

HBoV1 variants KPLMI-30 and KPLMI-3503. (A) Shown is the HBoV1 capsid surface with the 2-1028 

, 3- and 5-fold symmetry axes as well as the location of the S590 residue (in green). (B) Ribbon 1029 

diagrams of the VP3 monomer of the HBoV1 S590 variant. The S590 residue is represented by 1030 

a green sphere and localizes to the VR-VIIIB (HI loop). (C,E) Surface representation of the 1031 

HBoV1 KPLMI-30 (C) or KPLMI-3503 (E) capsid. The aa residues 396-397 in KPLMI-30 are 1032 

located on the capsid surface and are shown by green spheres, whereas the critical residues in 1033 

KPLMI-3503 (534-536) reside inside the capsid and are not visible in the image in panel (E). 1034 

(D,F) Ribbon diagrams of the VP3 monomer of the HBoV1 variants in panels (C) and (E), 1035 

respectively. Residue changes as compared to DQ000495 mentioned in panels (C) and (E) are 1036 

shown as green spheres. Images in panels (A), (C) and (E) are radially colored from blue to 1037 

white and red, representing capsid center to surface regions. These images were generated 1038 

using Chimera. In panels (B), (D) and (F), the capsid VRs from I to IX are indicated. These 1039 

images were generated using PyMOL (http://www.pymol.org/). 1040 
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DQ000495 (d) nt G G G G G G G A A G T G A G T T G C T G G G G G C A A A T A G G 

V1500106 17 . . . . . A A G . . . A C . C C A T C A . . . . A T C T C G . . 

V1600203 4 A . . . . . A . . . . . C . . . . . . . . . . A . . . . . . . . 

V1600212 5 . . . . . . A G . . . . C . . . . . . A . . . . . . . . . . . A 

V1600282 16 . . . . . A A G . . . . C . C C A T C A . . . . A T C T C G . . 

V1600769 7 . . . . . . A G . . . . C . C C A T . . . . . . . . . . . . . . 

V1500812 11 . . . . . A A G . . G . C . . C . T C A . . . . . T . . . G . . 

V1501341 11 . . . . . A A G . . G . C . . C . T C A . . . . . T . . . G . . 

V1602382 17 . . . . . A A G . . . . C . C C A T C A . . A . A T C T C G . . 

V1502611 11 . . . . . A A G . . G . C . . C . T C A . . . . . T . . . G . . 

V1502917 11 . . . . . A A G . . G . C . . C . T C A . . . . . T . . . G . . 

V1503576 11 . . . . . A A G . . G . C . . C . T C A . . . . . T . . . G . . 

V1504571 17 . . . . . A A G . . G A C . C C A T C A . . . . A T C T . G . . 

V1504589 13 . . . . . A A G . . G . C . C C . T C A . . . . . T C . . G . . 

V1606142 14 . . . . . . A G . . . . C . C C A T . A . . . . A T C T C G . . 

V1506720 17 . . . . . A A G . . . A C . C C A T C A . . . . A T C T C G . . 

V1512195 5 . A . A . . A G . . . . C . . . . . . . . . . . . . . . . . . . 

V1513659 15 . . . . . A A G . . . A C . C C . T C A . . . . . T C T C G . . 

V1513720 17 . . . . . A A G . . . A C . C C A T C A . . . . A T C T C G . . 

V1436140 15 . . . . . A A G . . G . C . C C A T C A . . . . . T C T . G . . 

V1541706 19 . . A . . A A G G . . . C A C C A T C A . . . . A T C T C G . . 

V1543043 15 . . . . . . A G . A . A C . C C A T . . . . . . A T C T C G . . 

V1445149 11 . . . . . A A G . . G . C . . C . T C A . . . . . T . . . G . . 

V1547212 16 . . . . . A A G . . . . C . C C A T C A . . . . A T C T C G . . 

V1547846 5 . . . . . . A G . . . . C . . . . . . A . . . . . . . . . . . A 

V1548399 6 . . . . . . A G . A . . C . . . . . . . . . A . . . . . . . . A 

V1612391 7 . . . . . . A G . . . . C . C C A T . . . . . . . . . . . . . . 

V1613007 18 . . . . . A A G . A . . C . C C A T . A . A . . A T C T C G A . 

VK11443 18 . . . . A . A G . . . . C . C C A T C A A A . . A T C T C G . . 

VK12783 18 . . . . A . A G . . . . C . C C A T C A A A . . A T C T C G . . 
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DQ000495.1 G G G G G G G A A G T G C A G T T G C T G G G G G G C A A A T A G G 

V1500106 . . . . . A A G . . . A . C . C C A T C . A . . . . A T C T C G . . V1600203 A . . . . . A . . . . .. . C . . . . . . . . . . . A . . . . . . . . 

V1600212 . . . . . . A G . . . . . C . . . . . . . A . . . . . . . . . . . A V1600282 . . . . . A A G . . . . . C . C C A T C . A . . . . A T C T C G . . 

V1600769 . . . . . . A G . . . . . C . C C A T . . . . . . . . . . . . . . . 

V1500812 . . . . . A A G . . G . . C . . C . T C . A . . . . . T . . . G . . V1501341 . . . . . A A G . . G . . C . . C . T C . A . . . . . T . . . G . . V1602382 . . . . . A A G . . . . . C . C C A T C . A . . A . A T C T C G . . V1502611 . . . . . A A G . . G . . C . . C . T C . A . . . . . T . . . G . . 

V1502917 . . . . . A A G . . G . . C . . C . T C . A . . . . . T . . . G . . 

V1503576 . . . . . A A G . . G . . C . . C . T C . A . . . . . T . . . G . . V1504571 . . . . A . A G . . . . . C . C C A T C . A . A . . A T C T C G . . 

V1504589 . . . . . A A G . . G . . C . C C . T C . A . . . . . T C . . G . . V1606142 . . . . . . A G . . . . . C . C C A T . . A . . . . A T C T C G . . 
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V1541706 . . A . . A A G G . . . . C A C C A T C . A . . . . A T C T C G . . 
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Sample V1502611 V1502917 V1503576 V1504589 V1506218 

Time point #1 #2 (+ 1 d) #3 (+ 6 d) #4 (+ 13 d) #5 (+ 25 d) 

Virus load (vg/ml) 1.57×1010 1.35×1010 7.65×109 1.50×106 3.91×106 

Amino acids:  380–381 NN NN NN NN NN 

Nucleotides:  1138–1143 AATAAT AATAAT AATAAT AA(C/T)AAT      AA(C/T)AAT      

       

     Amino acids:  390–391 LM LM LM LM LM 

Nucleotides:  1168–1173 CTGATG CTGATG CTGATG CT(A/G)ATG (C/T)T(A/G)ATG 

    

   

   

   

   

Amino acids:  589–590 AT AT AT A(S/T) A(S/T) 

Nucleotides:  1765–1770 GCAACA GCAACA GCAACA GC(CT/AA)CA GC(CT/AA)CA 
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DQ000495 (d) nt G G G G G G G A A G T C A G T T G C G T T C A A G C C A G G G G G T A T A C A A A T A G 

GQ925675 18 . . . . . A A G . . . . C . C C A T . . C . . . . . . . . A A A . . . . . A T C T C G . 

V1500812 11 . . . . . A A G . . G . C . . C . T . . C . . . . . . . . A . . . . . . . . T . . . G . 

V1602382 17 . . . . . A A G . . . . C . C C A T . . C . . . . . . . . A . . A . . . . A T C T C G . 

V1502611 11 . . . . . A A G . . G . C . . C . T . . C . . . . . . . . A . . . . . . . . T . . . G . 

V1512195 5 . A . A . . A G . . . . C . . . .   . . . . . . . . . . . . . . . . . . . . . . . . . . 

V1541706 19 . . A . . A A G G . . . C A C C A T . . C . . . . . . . . A . . . . . . . A T C T C G . 

V1613007 18 . . . . . A A G . A . . C . C C A T . . . . . . . . . . . A . A . . . . . A T C T C G A 

VK11443 18 . . . . A . A G . . . . C . C C A T . . C . . . . . . . . A A A . . . . . A T C T C G . 

KPLGr1 2 . . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . 

KPLGr2 1 . . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   . . . 

KPLMI-30 4 . . . . . . A . . . . . . . . . . . T C A G C A . . . . . . . . . . . . . . . . T . . . 

KPLMI-246 5 . . . . . . A . . . . . . . . . . . . . . . . . . . T G T . . . . . . . . . . . T . . . 

KPLMI-253 3 . . . . . . A . . . . T . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . 

KPLMI-311 9 . . . . . . A . . . . . . . . . . . . . . . . C A A . C T . . . . . . . . . . . T . . . 

KPLMI-499 3 A . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . 

KPLMI-642 3 . . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . T . . . 

KPLMI-3503 8 . . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . A C A C . . . T . . . 
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