
ARTICLE OPEN

Early identification of disease progression in ALK-rearranged
lung cancer using circulating tumor DNA analysis
Arlou Kristina Angeles 1,2,12, Petros Christopoulos2,3,12, Zhao Yuan4, Simone Bauer1,2, Florian Janke 1,2,5, Simon John Ogrodnik1,2,
Martin Reck6, Matthias Schlesner 2,4,10, Michael Meister2,7, Marc A. Schneider2,7, Steffen Dietz1,2,11, Albrecht Stenzinger8,9,
Michael Thomas2,3 and Holger Sültmann 1,2✉

Targeted kinase inhibitors improve the prognosis of lung cancer patients with ALK alterations (ALK+). However, due to the
emergence of acquired resistance and varied clinical trajectories, early detection of disease progression is warranted to guide
patient management and therapy decisions. We utilized 343 longitudinal plasma DNA samples from 43 ALK+ NSCLC patients
receiving ALK-directed therapies to determine molecular progression based on matched panel-based targeted next-generation
sequencing (tNGS), and shallow whole-genome sequencing (sWGS). ALK-related alterations were detected in 22 out of 43 (51%)
patients. Among 343 longitudinal plasma samples analyzed, 174 (51%) were ctDNA-positive. ALK variant and fusion kinetics
generally reflected the disease course. Evidence for early molecular progression was observed in 19 patients (44%). Detection of
ctDNA at therapy baseline indicated shorter times to progression compared to cases without mutations at baseline. In patients who
succumbed to the disease, ctDNA levels were highly elevated towards the end of life. Our results demonstrate the potential utility
of these NGS assays in the clinical management of ALK+ NSCLC.
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INTRODUCTION
About 3–7% of non-small-cell lung cancer (NSCLC) belong to a
molecular subgroup defined by the presence of ALK (anaplastic
lymphoma kinase) rearrangements1. Since its discovery, ALK-
rearranged (ALK+) NSCLC has been a model disease for targeted
therapies using tyrosine kinase inhibitors (TKIs) that potently
attenuate the function of ALK2–5. While initial responses to
selective TKIs are durable, ALK+ tumors eventually and inevitably
develop resistance to targeted therapy. For example, the first FDA/
EMA-approved ALK inhibitor crizotinib elicited improved objective
response rates and progression-free survival (PFS) in randomized
phase III trials compared to chemotherapy, but disease relapse
was nonetheless observed within 1 year of treatment6. Conse-
quently, significant insights into the molecular underpinnings of
TKI therapy resistance have been gained. At the same time,
increasingly potent and selective next-generation ALK TKIs have
also been developed and approved for clinical use7–10. Although
sequential therapy using next-generation ALK inhibitors improves
PFS and mitigates brain metastases11, ALK+ tumors continue to
adapt and develop alternative resistance mechanisms against
these drugs.
The dynamic adaptability of ALK+ tumors against ALK inhibitors

requires a personalized approach to disease monitoring for
accurate and timely clinical patient management. Next-
generation sequencing (NGS)-based analysis of tissue DNA is an
established and a highly robust method for baseline genotypic
evaluations12,13. However, while longitudinal tissue biopsies could

identify emerging resistance mutations, this strategy is limited by
a number of factors: (a) single-site tumor biopsies would most
likely fail to capture the full spectrum of genomic alterations of a
molecularly heterogeneous tumor14; (b) multiple tumor re-
biopsies pose procedural risks, and sometimes are not feasible15;
and (c) tissue sample preparation such as formalin fixation could
lead to false-positive results in molecular assays due to high levels
of base transitions15,16. Therefore, liquid biopsy technologies are
currently emerging as minimally invasive and easily accessible
alternatives to tissue biopsies. Peripheral blood plasma naturally
harbors molecular components that can be analyzed and
attributed to certain pathologies. Among these, the circulating
tumor DNA (ctDNA) compartment provides highly sensitive and
insightful genetic information for evaluating tumor heterogeneity
and clonal evolution. In addition to being a surrogate for localized
tissue biopsy, ctDNA has the potential to capture the complete
genomic profile of the primary tumor and metastases at expansive
time points without spatial bias. Detection of such exhaustive
genetic tumor profiles is particularly relevant for disease monitor-
ing of patients undergoing treatment, where tumor subclones
could emerge due to selective pressures introduced by various
therapeutic challenges.
Previously, overall ctDNA levels have been utilized as indepen-

dent biomarkers of disease progression or therapy response in
multiple cancer entities including metastatic breast cancer17,
melanoma18, metastatic gastrointestinal cancer19, metastatic
bladder cancer20, and lung cancer21. ctDNA detection has also
been explored for prediction of disease recurrence and minimal
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residual disease22–24. In ALK+ NSCLC, liquid biopsies have
successfully been utilized for ALK resistance mutation profiling,
presenting important implications for therapy decisions21,25,26.
We first reported the potential clinical utility of a combination of

cfDNA assays for longitudinal monitoring of ALK+ NSCLC under
TKI therapy27. We performed matched capture-based high cover-
age targeted NGS (tNGS) using a commercially available panel
comprised of genes optimized for longitudinal tumor burden
monitoring in lung and colorectal cancers. Simultaneously, we
applied the trimmed median absolute deviation from the copy
number neutral state (t-MAD) score using shallow whole-genome
sequencing (sWGS) to quantify global copy number changes
derived from ctDNA28. The information derived from these ctDNA
assays revealed the complex mutational kinetics of ALK+ tumors
across therapy lines, as well as the increasing genomic instability
of the tumor after sequential TKI treatments. Here, we extend the
number of longitudinal plasma samples from our initial ALK+
NSCLC cohort and for the first time, using tNGS and sWGS data,
identify threshold values for changes in variant allele frequencies
(VAFs) and t-MAD scores that potentially indicate disease
progression earlier than current conventional modalities. With
additional sampling points, we show that a combined NGS assay
approach can reveal molecular progression that precedes radio-
graphic assessment, particularly in patients with detectable
ctDNA. Furthermore, our study cohort demonstrates the potential
of targeted sequencing in baseline risk stratification of patients,
and corroborates previous data about the negative prognostic
impact of TP53 alterations detected during therapy.

RESULTS
Patient characteristics
In total, 43 metastatic ALK+ patients with corresponding 343
longitudinal plasma samples were considered for NGS analysis
(Fig. 1a, see Methods). The median age of the study population
was 57 years (range 39–80), with almost equal distribution of
males and females (53% males). Seventy eight percent of patients
were never/light-smokers (<10 pack-years, Table 1). Based on
tissue biopsies, EML4-ALK variant 1 (V1, E13:A20) was identified in
35% (15/43), V2 (E20:A20) in 16% (7/43), V3 (E6:A20) in 30% (13/
43), and other variants in 9% (4/43) of tumors. Other cases of ALK
fusion were detected with tissue RNA-NGS at initial diagnosis.
TP53 mutation were detectable in 11/39 (28%) patients with
available tissue DNA at diagnosis. The therapy regimens that
patients underwent at each sampling time point are shown in Fig.
1b. The first-generation TKI crizotinib was administered to 25/43
patients. Second-generation TKIs (ceritinib, alectinib, brigatinib)
were administered to 36/43 patients, and third-generation TKI
lorlatinib was given to 4/43 patients.

Genomic alteration landscape of ALK+NSCLC ctDNA
Among the patients under study, 22 (51%) had detectable ALK
alterations (mutation or rearrangement) in at least one plasma
sample based on tNGS profiling (Fig. 1a and Supplementary Table
1). A total of 36 ALK mutational events were detected, 34 of which
were known or probable resistance mutations, while two were
silent mutations. Of the remaining 21 patients, 11 (52%) had either
intracranial progression (n= 6) or stable disease at all sampling
points (n= 5), potentially explaining the low amount of ctDNA
shedding and unmeasurable ALK alterations in plasma DNA (Fig.
1c). ctDNA was detected in a total of 174/343 (51%) plasma
samples. Most of these were missense, synonymous, and
truncating mutations, disruptive inframe insertions, as well as
fusions and copy number changes in ALK and TP53 with 56% and
52% detection rate in ctDNA (+) plasma samples, respectively.
Other genes prominently altered were MET, EGFR, KRAS, ERBB2,

PDGFRA, KIT, RET, NRAS, BRAF, APC, and BRCA1 (Fig. 1d). Copy
number gains were also detected in MET, EGFR, and ERBB2.

Dynamics of ALK rearrangement and resistance mutations
during TKI therapy
We interrogated the concordance between ALKmutation or fusion
abundance in ALK ctDNA+ (n= 22) patients and disease status.
Emergence of at least one ALK mutation coincided with
progressive disease in eight of these patients (Supplementary
Table 2), while seven patients (ALK_06, 13, 18, 20, 25, 44, 62)
showed increasing EML4-ALK fusion abundance upon progression
on independent therapy lines (Supplementary Fig. 1). Five patients
developed multiple secondary mutations (ALK_12, 13, 28, 44, 62),
which included known TKI therapy resistance variants I1171N,
I1171T, F1174L, F1174V, F1174C, L1196M, G1202R, and G1269A29.
The median VAF of these ALK mutations was 0.18%. During the
follow-up period, four patients (ALK_03, 13, 18, and 28) underwent
subsequent treatment with a TKI that targeted the ALK mutation
(Supplementary Fig. 1). In all cases, a reduction of the VAF of the
mutation was observed after the change of therapy until the onset
of further disease progression.

Prognostic utility of ctDNA
We analyzed the relevance of detecting variants at treatment
initiation in relation to subsequent therapy durability, indicated by
the time to progression from treatment baseline. We determined
that upon independent evaluation of each therapy instance,
detection of VAF (i.e., VAFmean > 0) at therapy baseline reflected
significantly shorter time to progression compared to cases
without detectable variants (median: 97 vs. 224 days) (P <
0.0495; Fig. 2a). Additionally, we observed elevated ctDNA levels
as measured by VAFmean towards the end of life in 14 out of 16
patients who eventually succumbed to the illness. In six
representative patients, the measured ctDNA levels were among
the highest in samples prior to death (Fig. 2b).

Evaluating the potential utility of changes in genome-wide
copy number and VAFmean as indicators of disease
progression
We asked whether the t-MAD score, as a measure of global copy
number changes derived from ctDNA, could be an indicator of
clinical progression. Since the range of absolute t-MAD scores for
each patient varied due to the heterogeneity of clinical status and
applied therapy lines, we utilized a relative measurement of t-MAD
based on percentage of change (%Δt-MAD) to determine whether
this score of genome-wide copy number aberration could indicate
disease progression. We found that the relative change in t-MAD
score at successive sampling points was associated with extra-
cranial progressive disease coincident with therapy change (AUC:
0.8036 [0.7333–0.8740], P < 0.0001, Fig. 2c). The cutoff with
maximum sensitivity (100%) and specificity (51.68%) was a
t-MAD score increase of 0.5%.
Similarly, ctDNA levels based on tNGS were applied to assess

and predict therapy response17,30–33. Here, we used the difference
between the detectable VAFmean (ΔVAFmean) of consecutive
sampling points to quantify the change in ctDNA abundance31.
The ΔVAFmean also correlated significantly with clinical status (i.e.,
extracranial progressive disease coincident with therapy change),
but with a lower AUC than %Δt-MAD (AUC: 0.6499
[0.5277–0.7720], P= 0.0080, Fig. 3b). The optimal ΔVAFmean cutoff
was 0.0850, which showed a sensitivity of 57.58% and specificity
of 75.97% (Fig. 2c).
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Molecular progression precedes clinical progression in a
subset of ctDNA (+) patients
Next, we investigated whether ctDNA detection, as indicated
by molecular progression, could predate and thus predict
eventual clinical progression. Here, we used the ΔVAFmean and
%Δt-MAD cutoff values defined from the ROC curve analysis of
progressive disease points with therapy change as described
above (i.e., ΔVAFmean = 0.0850, %Δt-MAD= 0.500%). Due to the

heterogeneous therapy regimens across patients, we evaluated
the time difference in days between early molecular and
clinical progression (i.e., lead times) independently for each
therapy line per patient. To identify early molecular progres-
sion, we examined sampling time points under treatment with
stable disease according to RECIST v1.1. We identified 30 and
49 instances of such molecular progression using ΔVAFmean

and %Δt-MAD, respectively, with 14 instances meeting both

Fig. 1 Overview of the ALK+ NSCLC cohort. a Untargeted sWGS and targeted NGS assays were used to assess ctDNA in 43 ALK+ NSCLC
patients corresponding to 343 longitudinal plasma samples. Targeted NGS analysis only included genes common to both the Avenio Targeted
and Surveillance panels. In total, 51% (22 of 43) of patients had an ALK alteration in at least one liquid biopsy. b Timeline of plasma collection
and therapy administration in the patient cohort. ALK fusion variants and TP53 status from tissue analysis at diagnosis are indicated by colored
boxes. c Distribution of patients based on detected ALK alterations—including mutations and rearrangements. The group without detectable
ALK alterations (ALK−) is enriched for patients with intracranial progression or stable disease. d Molecular alterations identified in 174 ctDNA
(+) plasma samples based on tNGS.
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thresholds (Fig. 3a). Subsequently, we assigned a lead time if
the initial increase in ctDNA was sustained at subsequent
sampling points and eventually led to a progressive disease
state. This second criterion validated 6 out of the 16 (37.5%)
points based on ΔVAFmean alone and 12 out of 35 (34.2%)
based on %Δt-MAD alone as true lead times. In the 14 cases
where both NGS assay cutoffs were surpassed, 10 (71.4%)
points were validated. These values indicated the higher
sensitivity of %Δt-MAD compared to ΔVAFmean, while both
showed similar specificity. Moreover, these results emphasized
the potential of the combined NGS assays in increasing
prediction confidence of early molecular progression. In total,
we observed lead times in 19 out of 43 patients (44%),
corresponding to 21 instances during TKI treatment, and one
instance during chemotherapy. The median lead time to
clinical progression was 88 days (range: 20–638 days). Fourteen
of these 19 patients belonged to the group with detectable ALK
alterations by tNGS (n= 22) as described above (Fig. 3b),

indicating that calling lead times would be most relevant in
patients or samples with high ctDNA content. Through this
analysis, we also demonstrated the agreement and comple-
mentarity of tNGS (indicated by ΔVAFmean) and sWGS
(indicated by %Δt-MAD) data in indicating molecular progres-
sion prior to standard radiographic assessment. Combined
tNGS and sWGS data predicted lead times in 7 cases out of 22
(32%), tNGS data alone predicted lead times in five (23%) cases,
and sWGS data alone was predictive in ten (45%) cases (Fig. 3c).
No significant differences were found for the length of lead
time predicted by either NGS assay, both independently and in
combination (Fig. 3d). Lead time determination was also
independent of therapy line (Fig. 3e). Time to molecular
progression was significantly shorter in cases with lead time
compared with clinical progression based on radiographic
assessement (Fig. 3f). Lead times were longer for patients and/
or therapy lines with longer duration of response (Fig. 3g). Out
of 12 early molecular progression cases predicted by tNGS, 8
included TP53 mutations (TP53mut) in the variants monitored
longitudinally. Upon lead time comparison of TP53wt versus
TP53mut, we observed significantly shorter lead times in cases
with TP53 mutation (Fig. 3h).

Relevance of ALK resistance mutations in early molecular
progression events
We observed that early molecular progression identified through
increased ΔVAFmean were, in most cases, due to the cumulative
contribution of known or probable ALK resistance mutations. Out
of a total of 36 ALK mutations identified in our study, 20
overlapped with called lead times due to consistent and theshold-
surpassing ΔVAFmean. From the remaining 16 mutations, 9 were
detected at the time of radiologic progression (i.e., were not
informative of lead time). The remaining seven instances
represented mutations detected at the first sample analyzed for
each patient (n= 3), which are likely clonal mutations present
prior to therapy administration, and mutations arising under
treatment (n= 4) whose associated ΔVAFmean did not reach the
threshold. In addition, the VAFs of these mutations declined
before the next instance of radiologic progression. For emergent
non-ALK mutations (n= 23), which included alterations in BRAF,
ERBB2, KRAS, MET, NRAS, RET, and TP53, 13 mutation events were
detected at the time of radiologic progression. From the
remaining 10 mutations, two contributed to early molecular
progression detection (i.e., their emergence contributed to
ΔVAFmean which exceeded the defined threshold), and 8 muta-
tions emerged under treatment whose ΔVAFmean did not reach
the threshold, and subsequently the VAFs of these mutations
declined before the next instance of radiologic progression.
Altogether, our data indicate that resistance mutations, particu-
larly known ALK resistance mutations, can indicate early molecular
progression in many cases. However, the detection of lead time is
more reliable in instances where such novel mutations arise in
conjunction with increased ΔVAFmean, as applied in this work.
Otherwise, detection of isolated and low allele frequency
mutations pose the risk of identifying false-positive pseudo-
progression events34.

Longitudinal monitoring in representative ALK+ NSCLC
patients
Representative cases of early molecular progression are illustrated
in Fig. 4. Patient ALK_18 (Fig. 4a) depicts a case wherein both
ΔVAFmean and %Δt-MAD were in agreement in detecting early
molecular progression at a stable disease point. During lorlatinib
therapy, ALK_18 initially exhibited response as reflected by
decreasing VAF and t-MAD score 65 days post initiation of
treatment. Early molecular progression was detected 112 days
post therapy initiation while the disease was evaluated as stable,

Table 1. Patient characteristics.

ALK+ NSCLC patients analyzed in this study (n= 43)

Age, median (39–80) 57 (10)

Sex, % male 53%

Smoking status (% never smokers)a 78%

ECOG PS (%) at baseline

0 26

1 14

2 1

No data 2

Histologyb

adenocarcinoma 42/43

ALK fusion variantc

EML4-ALK V3 13

EML4-ALK V1/V2 22

Other 4

No data 4

TP53 status at baseline, mutatedd 11/39

ALK TKI, patient number

Crizotinib 25

Ceritinib/alectinib/brigatinib 36

Lorlatinib 4

Chemotherapy 7

Follow-up in months (median, [Q3-Q1]) 37 (52–27)

Number of samples analyzed per patient
(mean [range])

8 (4–31)

Percentage of cases with treatment-naive
samples

21%

Number of samples at disease progression
per patient, mean

2.8

Number of TKI lines covered with liquid
biopsy per patient, mean

1.9

SD standard deviation, EML4-ALK echinoderm microtubule-associated
protein-like 4 (EML4) and anaplastic lymphoma kinase (ALK) fusion, PS
performance status, TKI tyrosine kinase inhibitor.
aData available for 41/43 cases.
bOne patient had an ALK+ large-cell neuroendocrine lung carcinoma
responsive to ALK inhibitors.
cData available for 39/43 cases; one case with E18A20, one with E9A20, one
with K9A20 (KCL1), and one with K24A20 (KIF5B).
dData available for 39 cases by NGS of tissue biopsies at diagnosis of stage
IV disease.
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presented a case—during lorlatinib therapy—where both ΔVAFmean and %Δt-MAD were informative of the lead time. Early molecular progression
was apparent 129 days prior to clinical progression, as indicated by ΔVAFmean of 0.13% and %Δt-MAD of 25%. Both values surpass the NGS metric
thresholds identified in this study. b Patient ALK_04 depicts a case wherein ΔVAFmean indicated early molecular progression during alectinib
therapy. A ΔVAFmean of 0.14% was calculated 41 days prior to clinical progression. c Patient ALK_37 emphasizes the relevance of untargeted NGS
in ctDNA monitoring particularly in cases where genetic alterations remained undetected by tNGS. Here, %Δt-MAD of 46% was already apparent
at a stable disease time point, 64 days prior to clinical progression. PD progressive disease, SD stable disease, BPD brain PD, TPD thoracic PD, R
response, CBDP treatment continuation beyond disease progression, RT radiotherapy, CTx chemotherapy, ImmTx immunotherapy.

AK Angeles et al.

7

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2021)   100 



and two subsequent sampling points showed continued increase
of NGS metrics (i.e., ΔVAFmean= 0.13%; %Δt-MAD= 25%) with
stable disease until disease progression was observed. This point
came 129 days after the onset of molecular progression. Patient
ALK_04 (Fig. 4b) represents a case where ΔVAFmean was
instrumental in identifying a lead time during alectinib therapy.
After disease progression on ceritinib (852 days since diagnosis),
the therapy was switched to alectinib in which stable disease was
observed 100 days post administration. However, molecular
analysis at this point already revealed ΔVAFmean of 0.14%,
surpassing the threshold. Clinical progression was eventually
observed 41 days later, supporting the result of ctDNA evaluation.
Finally, patient ALK_37 (Fig. 4c) shows the utility of t-MAD
monitoring particularly in the absence of detectable genetic
alterations by tNGS. During crizotinib therapy, a %Δt-MAD
increase of 46% was already apparent 86 days post treatment
initiation, at which point the disease was still clinically stable.
Disease progression occurred 64 days later, which led to a TKI
therapy switch to alectinib. These case examples represent the 19
instances in our cohort where disease progression lead times were
indicated by elevated levels of ctDNA through quantification of
ΔVAFmean and %Δt-MAD.

DISCUSSION
Due to the relatively long duration of treatment and emergence of
actionable acquired resistance, therapy monitoring is especially
important for TKI-treated NSCLC patients35,36. Early detection of
disease progression could facilitate significant improvement in
patient outcomes, as approximately 25–30% of NSCLC patients
failing ALK or EGFR TKI miss subsequent therapy or chemotherapy
due to rapid clinical deterioration37,38. Previously, shallow whole-
genome sequencing has been applied to estimate global copy
number changes from ctDNA through computation of the t-MAD
score28,39. We further showed that this metric was associated with
shorter overall survival in a subset of our ALK+ NSCLC cohort27.
Here, we systematically examine whether combined tNGS and
sWGS could also enable the detection of acquired resistance and
disease progression earlier than radiological imaging.
Previously, an important challenge was the lack of a general

consensus on how to measure ctDNA levels and response cutoffs.
To date, multiple studies have used various ctDNA quantification
methods including the maximum variant allele frequency40, the
mean variant allele frequency31,41, and the total ctDNA concen-
tration32. Similarly, response thresholds were typically established
using a single time point after therapy baseline with arbitrary
cutoff values18,32,42. Here, we employed ΔVAFmean and the %Δt-
MAD scores because these metrics can capture ctDNA changes
regardless of how many SNV and/or CNV are present in the
baseline sample. The use of ultra-deep targeted sequencing with
optimized gene panels enables efficient surveillance of alteration
hotspots of high clinical impact. These somatic changes are then
used for early screening, treatment monitoring, and detection of
residual disease. In parallel, untargeted sWGS approaches to liquid
biopsy have been successful in other cancer entities39,43,44 and
have been shown to reflect tumor status, even in cases without
detectable SNVs27. Our data show that ΔVAFmean offers better
specificity than %Δt-MAD in discriminating progressive versus
non-progressive disease. In contrast, %Δt-MAD showed increased
sensitivity. These results suggest that ΔVAFmean could be a more
relevant ctDNA metric for clinical utility in the advanced setting
where specificity is a critical performance assay criterion and
greater ctDNA shedding occurs44, whereas %Δt-MAD could be
applied at early disease stages. Nonetheless, residual false-positive
and false-negative calls of disease status based on ctDNA
evaluations could still take place due to tumors that shed minimal
amounts of ctDNA; due to cases with apparent disagreement
between molecular progression and imaging evaluations; and due

to clearance of tumors leading to ctDNA shedding during earliest
cycles of treatment.
In our study population, VAFmean > 0 at therapy baseline

predicted shorter therapy duration compared to cases without
detected variants (VAFmean= 0). This parallels findings demon-
strating that ctDNA at baseline indicates poor prognosis in various
cancers18,27,45–47. Pretreatment VAF levels have also been shown
to be prognostic of treatment response with immune checkpoint
inhibitors in patients with advanced solid tumors31,48. Pretreat-
ment VAFmean and maximum VAF were significantly inversely
correlated with overall survival in NSCLC, urothelial cancer,
microsatellite instable cancers, gastroesophageal cancer, and
ovarian cancer31. Our results extend the potential of ctDNA
detectability at therapy baseline as biomarkers for therapy
response across various treatment lines in ALK+ NSCLC. None-
theless, we recognize the marginal significance (P < 0.045) of our
survival data. Variations in therapy sequence, therapy duration,
and interpatient variabilities could be sources of confounding
factors in the analysis. Each therapy line per patient was also
treated as an independent case, discounting the potential effects
of prior therapy.
A potential confounding factor in longitudinal monitoring lies in

the assumption that visual evaluation of tumor radiographs
accurately reflects tumor growth or progression49. In fact, there
were sampling points attributed with clinically stable disease that
showed consistently increasing levels of VAFmean and/or t-MAD,
which could indicate onset of disease progression below the limit
of detection of radiographic modalities. By specifying numerical
cutoffs for both NGS assays through ROC analysis, we were able to
systematically identify such early molecular progression events in
44% of patients, across all therapy lines. This suggests that in this
subset of our study cohort, ctDNA analysis exhibits higher
sensitivity in detecting tumor progression than visual staging. It
is also worthwhile to note that in majority of cases, early
emergence of known or probable ALK mutations accounted for
increased ΔVAFmean that resulted in lead time identification. This
emphasizes the sensitivity of ctDNA analysis in identifying
potentially actionable mutations early in the disease course. From
the tumor biology standpoint, such cases reflect the dynamic
clonal evolution within the tumor that could potentially be missed
by tissue re-biopsies. Nonetheless, there were also mutations—
both ALK and non-ALK—that were inconsistent or sporadic
throughout the longitudinal course. Using ΔVAFmean as a
cumulative metric of ctDNA levels minimizes identification of
such false-positive pseudo-molecular progression events that
could have arisen from stochastic sampling issues50.
While both tNGS and sWGS were able to independently call

early molecular progression events, we also present evidence that
a combined evaluation increases the confidence in predicting lead
times by approximately 50%, corroborating our previous observa-
tion27 that untargeted sWGS complements tNGS. Moreover, there
was a positive correlation between the length of predicted lead
time and durability of response to therapy. Therefore, molecular
monitoring for earlier detection of disease progression could be
even more useful for patients treated with newer ALK inhibitors,
namely alectinib, brigatinib, or lorlatinib, whose progression-free
survival extends well beyond two years, in contrast to
10–12 months under crizotinib8–10. This approach also limits the
risk due to higher cumulative radiation exposure from regular
CTs51. Interestingly, we further observed that lead times involving
mutations in TP53 were shorter compared to TP53 wild types. This
implies that the emergence of TP53 alterations during therapy
course portends a swifter progression of disease, as previously
noted in ALK+ NSCLC52–54. Ideally, early detection of molecular
progression could prompt clinicians to halt ineffective treatments,
avoiding potential side effects and added financial burden, and
also facilitate an earlier therapy switch, while the patients are still
capable of receiving next-line therapies38. Such a strategy could
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be particularly useful for cases with higher risk, such as those with
TP53 mutations and/or the EML4-ALK variant 3 (refs. 53,55). This
approach is complementary to monitoring of early ctDNA changes
after therapy initiation, which have been shown to predict therapy
durability44.
The main limitations of our study are related to its retrospective

design, the relatively small patient number, and the lack of a
separate validation cohort. Our findings should ideally be
confirmed in a larger, prospective study with strictly defined
sampling and imaging intervals. The variants by tNGS were also
limited to the genes included in the panels utilized, thus other
genetic alterations in ctDNA were not evaluated.
Our work demonstrates the applicability of a combined

targeted and untargeted NGS analysis of cfDNA for longitudinal
monitoring and identification of early molecular progression in
ALK+ NSCLC. We established ΔVAFmean and %Δt-MAD as
quantifiable metrics for ctDNA levels and determined thresholds
to enable prediction of disease progression and identification of
early molecular progression. Currently, the development of robust
criteria assessing ctDNA dynamics that correlate with clinical
status such as disease progression, therapy response, and therapy
resistance remains challenging partly due to stochastic sampling
issues50, and the spectrum of ctDNA shedding tendencies of
different malignancies. Aside from ctDNA, it should also be noted
that other cell-free markers have the capacity to detect progres-
sion and predict disease recurrence. In NSCLC, for example, miRNA
signatures in the plasma have been shown to associate with
higher risk for progression56,57, while a separate panel could
predict survival in squamous cell carcinoma patients56. Serum
carcinoembryonic antigen (CEA) is also associated with distinct
cancer progression profiles and carries predictive information of
risk recurrence in NSCLC58,59. Oncogenic mRNA markers in plasma
have also shown clinical utility in NSCLC60,61. Thus, in addition to
genomic alterations in ctDNA, future investigations of other
plasma solutes including proteins, miRNAs, mRNAs, and the
epigenomic properties of ctDNA (e.g., methylation, nucleosome
positioning) will advance the potential of liquid biopsy in
complementing imaging technologies in improving personalized
patient management and efficient therapy decisions.

METHODS
Patients and sample collection
The study was approved by the ethics committees of Heidelberg University
(S-270/2001, S-296/2016) and Lübeck University (AZ 12-238). Written
informed consent was obtained from all study participants. Newly
diagnosed cases were screened for the presence of an ALK alteration in
tissues by fluorescence in situ hybridization (FISH, ZytoLight SPEC ALK
probe, ZytoVision GmbH, Bremerhaven, Germany) and reverse-
transcription polymerase chain reaction until 2015, or by immunohisto-
chemistry (D5F3 clone, Roche, Mannheim, Germany) and RNA-based next-
generation sequencing (NGS, Thermo Fisher Lung Cancer Fusion Panel,
Waltham, MA, USA) thereafter, as previously described12. Peripheral blood
was prospectively drawn through venipuncture at each outpatient visit
from 84 ALK+ patients with metastatic NSCLC under TKI therapy at
Thoraxklinik Heidelberg and Lungenclinic Grosshansdorf, Germany62. In
total, 412 longitudinal blood samples were collected and plasma was
isolated within 1 h of blood draw, using the double spin method as
previously described27. Samples were stored at −80 °C in the Lung Biobank
Heidelberg/BMBH until further processing.
Since our study was focused on longitudinal therapy monitoring, we

limited the scope of our analysis only on patients with at least four
evaluable plasma samples throughout their treatment course. Using these
criteria, we excluded 41 patients (69 plasma samples). Ultimately, 43
metastatic ALK+ patients with corresponding 343 plasma samples were
considered for NGS analysis (Fig. 1a). The characteristics of these patients
are summarized in Table 1. Clinical data and the results of routine
radiographic assessments (every 8–12 weeks) using chest/abdominal CT
and brain MRI were collected through a review of patient records with a
cutoff on September 15, 2020.

cfDNA isolation
The AVENIO cfDNA Isolation Kit (Roche Diagnostics) was used to isolate
cfDNA from 2mL of patient plasma, following the manufacturer’s protocol.
The characteristic mononucleosomal molecular weight profile
(160–200 bp) of the purified cfDNA was assessed using the Bioanalyzer
2100 High Sensitivity DNA Kit (Agilent Technologies). The cfDNA was
quantified using the Qubit dsDNA High Sensitivity Kit (Thermo Fisher).

cfDNA NGS assays
Sequencing libraries for capture-based targeted sequencing were gener-
ated using the AVENIO ctDNA Library Preparation Kit with either the
Targeted or Surveillance Panel (Roche Diagnostics), as previously
described27. Equimolar 16-plex enriched library pools were sequenced
on the Illumina NextSeq 550 platform with the High-Output Kit V2 (2 ×
150 bp). The resulting raw BCL files were processed using the AVENIO
ctDNA analysis software (Roche Diagnostics, version 2.0.0). The proprietary
analysis pipeline applied by the software is adapted from the CAPP-Seq
workflow with integrated digital suppression63,64. Called variants with
variant allele frequencies (VAFs) ≥30% were classified as germline
mutations and were excluded from subsequent analyses. Only genes
common to both Targeted and Surveillance panels (Supplementary Table
3) were compared for all longitudinal assessments, with a VAF calling
threshold of 0.01%, facilitated by an average of 4100× unique target
coverage as previously reported27. For sWGS, sequencing libraries were
prepared using the KAPA HyperPrep Kit with KAPA Dual-Indexed Adapters
for Illumina platforms, as previously described27 using 1–2.5 ng cfDNA as
input. Pooled multiplexes of 48–67 equimolar libraries were sequenced on
the Illumina HiSeq 4000 platform (2 × 100 bp). To determine genome-wide
copy number variations (CNVs) and calculate the t-MAD scores, raw sWGS
sequencing data were processed and analyzed as previously described27.
Briefly, automated sequence quality control and alignment were
performed using the One Touch Pipeline65. Genome-wide copy number
profiles and tumor fractions were estimated using ichorCNA implemented
in R (version 3.3.1). T-MAD scores were computed using a 1-Mb bin size
and without fragment size selection27.

Genomic alteration and t-MAD score determination
Somatic SNVs and indels detected by the AVENIO ctDNA analysis software
were used to calculate the mean variant allele frequency (VAFmean) per
sampling point. This value is the sum of all VAFs divided by the number of
all mutations at each time point to account for polyclonality17. The change
in mean VAF (ΔVAFmean) was the difference in VAFmean between two
successive time points as shown by Eqs. (1) and (2).

ΔVAFmean ¼ VAF2 � VAF1 (1)

where

VAF ¼
Pn

i¼1 VAFi
n

(2)

Here, n represents the number of detected variants. If n= 0, or no variant
was detected, VAFmean was set to 0. Positive ΔVAFmean values indicate
increasing VAFmean. In parallel, the change in t-MAD (%Δt-MAD) was
calculated, in percentage, as the difference between two successive t-MAD
scores, divided by the t-MAD measured at the previous time point as
shown by Eq. (3).

%Δt �MAD ¼ t-MAD2 � t-MAD1

t-MAD1

� �

´ 100% (3)

ΔVAFmean and %Δt-MAD thresholds for disease progression were derived
using the respective receiver operating characteristic (ROC) curve across
measurement time points with progressive disease accompanied by
therapy change (PDtherapy change) as the event of interest. The annotation of
PDtherapy change was verified manually based on radiological imaging
according to RECIST criteria v1.1 (ref. 66), as well as information about
patient treatment from the medical records. Area under the curve (AUC)
values were generated using GraphPad Prism 9 (GraphPad software, La
Jolla California USA), while cutoff values were identified using the Youden
Index, which maximizes the sensitivity and specificity of the NGS metric
(i.e., ΔVAFmean and %Δt-MAD)67. Seven patients (ALK_22, 37, 57, 59, 60, 66,
105) were excluded from ΔVAFmean measurements due to the absence of
detectable variants in all plasma DNA samples. In total, 162 measurements
of ΔVAFmean and 184 measurements of %Δt-MAD were used for ROC curve
analyses (Supplementary Tables 4 and 5).
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We defined early molecular progression as a change in either NGS
metric (i.e., ΔVAFmean or %Δt-MAD) surpassing the threshold value defined
from the ROC curve analysis, from a point where the tumor was
radiographically stable according to RECIST to a later progression point.
The lead time was defined as the number of days between the first
observation of molecular progression until the point of an initial clinical
progression as per radiographic assessment based on RECIST.

Statistical analysis and data visualization
Survival data were analyzed using the log-rank test. Lead time
comparisons were performed using the Mann–Whitney U test or one-
way ANOVA, as labeled in the graphs. Pairwise comparison of days to
progression was performed using the Wilcoxon’s paired test. Since the
primary aim of this study was to establish the relationship between ctDNA
changes and disease progression, samples from different progression time
points of the same patient were analyzed as independent, in order to
account for the fact that several factors can influence liquid biopsy
positivity differently in each sample of the same patient (e.g. progression
site, progression rate, tumor volume, preceding treatment), and that these
factors act similarly across different patients. Statistical analyses, including
ROC curves, and relevant graphs were performed and generated,
respectively, using GraphPad Prism 9.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All sequencing data supporting the findings in this study are deposited in the
European Genome-phenome Archive (EGA) under accession number
EGAS00001005327.
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