1,007 research outputs found

    Ektachem evaluation

    Get PDF
    The Eastman Kodak Ektachem 400 Analyzer was evaluated in terms of its precision, linearity, accuracy, and interferences for two colorimetric tests (neonatal bilirubin and albumin), a two point rate colorimetric test (amylase), and four potentiometric tests (sodium, potassium, chloride and carbon dioxide). The precision study results obtained were comparable to those of other laboratory instruments for five of the seven tests under consideration. The exceptions were carbon dioxide at the high range (30 mmol/L) and albumin at the low range (2 g/dl). Linearity checks were satisfactory for all seven tests but albumin, where a negative bias was observed in readings below 2 g/dl. Accuracy testing by comparison of patient results of the Ektachem technology and other laboratory methods was acceptable for all seven tests except albumin and amylase. Interference studies indicate that the Ektachem methodologies are less susceptible to elevated triglyceride and protein interference than comparable laboratory methods for sodium and potassium analysis. As a result of this evaluation (and other studies not presented here), the Ektachem 400 Analyzer was implemented in this laboratory for all tests except amylase, albumin and creatinine, i.e., glucose, urea nitrogen, sodium, potassium, chloride, carbon dioxide, calcium, uric acid, cholesterol, triglyceride, total protein, ammonia, and neonatal bilirubin were acceptable

    Simple mechanism for a positive exchange bias

    Full text link
    We argue that the interface coupling, responsible for the positive exchange bias (HE) observed in ferromagnetic/compensated antiferromagnetic (FM/AF) bilayers, favors an antiferromagnetic alignment. At low cooling field this coupling polarizes the AF spins close to the interface, which spin configuration persists after the sample is cooled below the Neel temperature. This pins the FM spins as in Bean's model and gives rise to a negative HE. When the cooling field increases, it eventually dominates and polarizes the AF spins in an opposite direction to the low field one. This results in a positive HE. The size of HE and the crossover cooling field are estimated. We explain why HE is mostly positive for an AF single crystal, and discuss the role of interface roughness on the magnitude of HE, and the quantum aspect of the interface coupling.Comment: 10 pages, 2 figures, to be published on May 1 issue of PR

    Pisa: Arbitration outsourcing for state channels

    Get PDF
    State channels are a leading approach for improving the scalability of blockchains and cryptocurrencies. They allow a group of distrustful parties to optimistically execute an application-defined program amongst themselves, while the blockchain serves as a backstop in case of a dispute or abort. This effectively bypasses the congestion, fees and performance constraints of the underlying blockchain in the typical case. However, state channels introduce a new and undesirable assumption that a party must remain online and synchronised with the blockchain at all times to defend against execution fork attacks. An execution fork can revert a state channel's history, potentially causing financial damage to a party that is innocent except for having crashed. To provide security even to parties that may go offline for an extended period of time, we present Pisa, the first protocol to propose an accountable third party who can be hired by parties to cancel execution forks on their behalf. To evaluate Pisa, we provide a proof-of-concept implementation for a simplified Sprites and we demonstrate that it is cost-efficient to deploy on the Ethereum network

    Aggregatable Distributed Key Generation

    Get PDF
    In this paper, we introduce a distributed key generation (DKG) protocol with aggregatable and publicly-verifiable transcripts. Compared with prior publicly-verifiable approaches, our DKG reduces the size of the final transcript and the time to verify it from O(n2) to O(nlogn) , where n denotes the number of parties. As compared with prior non-publicly-verifiable approaches, our DKG leverages gossip rather than all-to-all communication to reduce verification and communication complexity. We also revisit existing DKG security definitions, which are quite strong, and propose new and natural relaxations. As a result, we can prove the security of our aggregatable DKG as well as that of several existing DKGs, including the popular Pedersen variant. We show that, under these new definitions, these existing DKGs can be used to yield secure threshold variants of popular cryptosystems such as El-Gamal encryption and BLS signatures. We also prove that our DKG can be securely combined with a new efficient verifiable unpredictable function (VUF), whose security we prove in the random oracle model. Finally, we experimentally evaluate our DKG and show that the per-party overheads scale linearly and are practical. For 64 parties, it takes 71 ms to share and 359 ms to verify the overall transcript, while for 8192 parties, it takes 8 s and 42.2 s respectively

    Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline

    Get PDF
    The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower—approximately 3-fold or more—for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution

    Smart contracts for bribing miners

    Get PDF
    We present three smart contracts that allow a briber to fairly exchange bribes to miners who pursue a mining strategy benefiting the briber. The first contract, CensorshipCon, highlights that Ethereum’s uncle block reward policy can directly subsidise the cost of bribing miners. The second contract, HistoryRevisionCon, rewards miners via an in-band payment for reversing transactions or enforcing a new state of another contract. The third contract, GoldfingerCon, rewards miners in one cryptocurrency for reducing the utility of another cryptocurrency. This work is motivated by the need to understand the extent to which smart contracts can impact the incentive mechanisms involved in Nakamoto-style consensus protocols

    Self-control in decision-making involves modulation of the vmPFC valuation system

    Get PDF
    Every day, individuals make dozens of choices between an alternative with higher overall value and a more tempting but ultimately inferior option. Optimal decision-making requires self-control. We propose two hypotheses about the neurobiology of self-control: (i) Goal-directed decisions have their basis in a common value signal encoded in ventromedial prefrontal cortex (vmPFC), and (ii) exercising self-control involves the modulation of this value signal by dorsolateral prefrontal cortex (DLPFC). We used functional magnetic resonance imaging to monitor brain activity while dieters engaged in real decisions about food consumption. Activity in vmPFC was correlated with goal values regardless of the amount of self-control. It incorporated both taste and health in self-controllers but only taste in non–self-controllers. Activity in DLPFC increased when subjects exercised self-control and correlated with activity in vmPFC

    SoK: Consensus in the Age of Blockchains

    Get PDF
    The core technical component of blockchains is consensus: how to reach agreement among a distributed network of nodes. A plethora of blockchain consensus protocols have been proposed---ranging from new designs, to novel modifications and extensions of consensus protocols from the classical distributed systems literature. The inherent complexity of consensus protocols and their rapid and dramatic evolution makes it hard to contextualize the design landscape. We address this challenge by conducting a systematization of knowledge of blockchain consensus protocols. After first discussing key themes in classical consensus protocols, we describe: (i) protocols based on proof-of-work; (ii) proof-of-X protocols that replace proof-of-work with more energy-efficient alternatives; and (iii) hybrid protocols that are compositions or variations of classical consensus protocols. This survey is guided by a systematization framework we develop, to highlight the various building blocks of blockchain consensus design, along with a discussion on their security and performance properties. We identify research gaps and insights for the community to consider in future research endeavours

    An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in \u3ci\u3eDrosophila\u3c/i\u3e

    Get PDF
    Mitochondrial transcription, translation, and respiration require interactions between genes encoded in two distinct genomes, generating the potential for mutations in nuclear and mitochondrial genomes to interact epistatically and cause incompatibilities that decrease fitness. Mitochondrial-nuclear epistasis for fitness has been documented within and between populations and species of diverse taxa, but rarely has the genetic or mechanistic basis of these mitochondrial–nuclear interactions been elucidated, limiting our understanding of which genes harbor variants causing mitochondrial–nuclear disruption and of the pathways and processes that are impacted by mitochondrial–nuclear coevolution. Here we identify an amino acid polymorphism in the Drosophila melanogaster nuclear-encoded mitochondrial tyrosyl–tRNA synthetase that interacts epistatically with a polymorphism in the D. simulans mitochondrial-encoded tRNATyr to significantly delay development, compromise bristle formation, and decrease fecundity. The incompatible genotype specifically decreases the activities of oxidative phosphorylation complexes I, III, and IV that contain mitochondrial-encoded subunits. Combined with the identity of the interacting alleles, this pattern indicates that mitochondrial protein translation is affected by this interaction. Our findings suggest that interactions between mitochondrial tRNAs and their nuclear-encoded tRNA synthetases may be targets of compensatory molecular evolution. Human mitochondrial diseases are often genetically complex and variable in penetrance, and the mitochondrial–nuclear interaction we document provides a plausible mechanism to explain this complexity

    Metastable Random Field Ising model with exchange enhancement: a simple model for Exchange Bias

    Get PDF
    We present a simple model that allows hysteresis loops with exchange bias to be reproduced. The model is a modification of the T=0 random field Ising model driven by an external field and with synchronous local relaxation dynamics. The main novelty of the model is that a certain fraction f of the exchange constants between neighbouring spins is enhanced to a very large value J_E. The model allows the dependence of the exchange bias and other properties of the hysteresis loops to be analyzed as a function of the parameters of the model: the fraction f of enhanced bonds, the amount of the enhancement J_E and the amount of disorder which is controlled by the width sigma of the Gaussian distribution of the random fields.Comment: 8 pages, 11 figure
    • …
    corecore