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Abstract. We present three smart contracts that allow a briber to fairly
exchange bribes to miners who pursue a mining strategy benefiting the
briber. The first contract, CensorshipCon, highlights that Ethereum’s
uncle block reward policy can directly subsidise the cost of bribing min-
ers. The second contract, HistoryRevisionCon, rewards miners via an
in-band payment for reversing transactions or enforcing a new state of
another contract. The third contract, GoldfingerCon, rewards miners
in one cryptocurrency for reducing the utility of another cryptocur-
rency. This work is motivated by the need to understand the extent
to which smart contracts can impact the incentive mechanisms involved
in Nakamoto-style consensus protocols.

1 Introduction

Cryptocurrencies such as Bitcoin and Ethereum have collectively achieved a
market capitalisation of over $600bn in January 2018. The success of cryptocur-
rencies relies on an append-only public ledger called the blockchain, and on
Nakamoto consensus, a mechanism to reward honest participants (miners) for
updating the blockchain. The consensus protocol is designed with the idea of
“one-cpu-one-vote” as miners compete to solve a computationally difficult cryp-
tographic puzzle. The first miner to present a valid solution wins the authority
to append his block containing a list of recent transactions to the blockchain.
Thus, the security and reliability of the blockchain is dependent on the assump-
tion that a majority of the network’s computational power is honest. If not, an
adversary is able to control the content of the blockchain.

Since the introduction of Bitcoin in 2009, the mining process has changed
drastically, with advances in graphic processing units (GPUs), field-programmable
gate arrays (FPGAs) and application-specific integrated circuits (ASICs) offering
much greater performance than a single CPU. Thus, today’s miners must invest
in expensive hardware before competing meaningfully in the consensus protocol.
Similarly, pooled mining allows a single appointed pool master to decide which
transactions to include in a block and how to distribute any earned block re-
wards amongst a co-operative group of miners. Solutions such as P2Pool [28] and
SmartPool [14] allow an algorithm to play the role of the pool master, but have
not yet gained widespread use. The combination of these two factors has unde-
niably led to a decrease in the number of participants in the consensus protocol
underlying Bitcoin. In fact, a panel session at Scaling Bitcoin 2015 was made
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up of eight participants who together controlled 80% of the Bitcoin network’s
computational power [20].

Whilst it is assumed that miners will honestly follow the consensus proto-
col, the assumption that the honest mining strategy is the most rewarding has
been criticised. Eyal and Sirer [9] proposed selfish-mining strategies that can be
deployed by rational miners with at least 25% of the network’s computational
power to gain more rewards than they deserve. This work was extended by
Sapirshtein et al. [22] and Nayak et al. [18]. Although selfish-mining strategies
theoretically weaken the 51% honest mining assumption, there is no evidence
that any miners are engaging in them in major deployed cryptocurrencies. This
suggests that miners are indeed honest and will not deviate from the honest
mining strategy. Yet mining is not always profitable1 in the short-term [6] and
in August 2017 miners have exhibited rational behaviour in order to boot short-
term profit. For example some mining pools including ViaBTC mined either
Bitcoin or Bitcoin cash depending on which cryptocurrency was more profitable
in the short-term. On the other hand influential members of the Bitcoin com-
munity have also suggested that miners may be accepting out-of-band bribes to
mine Bitcoin Cash [24].

This type of mining behaviour reflects a tragedy of the commons first identi-
fied by Bonneau [3]. Individually rational miners have an incentive to maximise
their profit (i.e., accept bribes to mine an alternative fork), but collectively share
a concern for the network’s long-term health. Liao and Katz [13] extend the work
of Bonneau by proposing “whale” transactions, which use anomalously large fees
to bribe miners. A new whale transaction is authorised for every new block in
the alternative fork in order to reward the bribed miners for their continuous
support. While Bonneau concludes that bribery attacks should be considered
when attempting to prove that a Nakamoto-style consensus protocol is incen-
tive compatibility, so far bribery attacks have not been seen as practical by the
wider community. Although the question of how to attack or disrupt a minority
chain in the event of new Bitcoin forks is increasingly an active area of discus-
sion [1,5,30]. In fact, the founder of the mining pool BTC.TOP (which held 13%
of the network’s computational power as of October 2017) stated in an interview:

“We have prepared $100 million USD to kill the small fork of CoreCoin,
no matter what proof of work algorithm, sha256 or scrypt or X11 or any
other GPU algorithm. Show me your money. We very much welcome a
CoreCoin change to POS.” [19]

Looking beyond Bitcoin, it is important to consider whether the additional
functionality provided by alternative cryptocurrencies can be used to enable
new forms of bribery, and in particular whether a platform like Ethereum that
supports smart contracts enables the automated (and thus fair) payment of
bribes to miners who change their mining strategy. For pooled mining, Velner et
al. [27] demonstrate a smart contract that rewards miners in a pool who perform

1 A surge in the Bitcoin price this year made mining profitable in the short-term for
”hobbyist miners” [21].



so-called block withholding attacks2 and later provide the contract with a proof-
of-stale-work. Teutsch et al. [25] show that a briber can set up a script puzzle
that diverts the network’s mining power, thus removing competition for the
briber’s mining power. They demonstrate that a briber with at least 38.2% of
the network’s hashrate can achieve a positive pay-off that also covers the cost of
each script puzzle.

This paper proposes three new contracts that reward miners who provide
evidence that their mining strategy has changed according to a briber’s intention.
Our bribery attacks differ to previously proposed contracts, in that they do not
focus on disrupting mining pool protocols or attempt to divert miners from
solving the network’s puzzle. Instead, our contracts facilitate renting hardware
by rewarding miners using an in-band bribe (i.e. coins within the cryptocurrency)
or an out-of-band bribes (i.e. coins from another cryptocurrency).

Our three smart contracts are as follows:

– In Section 3, we propose CensorshipCon, which relies on Ethereum’s block
reward policy to subsidise a briber wanting full control over the blockchain’s
content. We provide an analysis to show that a briber with at least 25%
of the network’s computational power can maximise the subsidy while also
earning a small profit.

– In Section 4, we propose HistoryRevisionCon, which rewards miners that
reverse transactions and computations in the blockchain by mining an al-
ternative fork. It is also the first history-revision bribery attack where the
briber and bribee trust only the contract (and not each other).

– In Section 5, we propose and implement GoldfingerCon, which rewards
miners who can prove their mining strategy has reduced the utility of another
cryptocurrency. We provide a proof-of-concept implementation to evaluate
the feasibility of our attack and demonstrate that accepting a bribe costs
approximately $0.46.

2 Background

In this section we provide an overview of Bitcoin and Ethereum with a focus on
the expressiveness of Bitcoin Script, Ethereum smart contracts, and the reward
policies in each consensus protocol.

2.1 Bitcoin

Bitcoin [17] is a global public ledger, maintained by a distributed set of miners,
that facilitates trading a single asset (bitcoins) in a publicly verifiable manner.
All coins are exchanged using transactions that have a list of inputs (the source

2 In such an attack, a miner sends only partial proofs-of-work to the pool master,
discarding all full proofs-of-work. The miner is rewarded by the master for attempting
to find a new block but does not contribute to the pool’s income as new blocks are
discarded.



of the coins) and outputs (the destination of the coins). A mechanism called
Bitcoin Script is used to specify conditions that must be satisfied before the
coins associated with a transaction output can be spent. The most popular script,
pay-to-pubkey-hash, requires a digital signature from the corresponding Bitcoin
address (i.e., the hash of a public key). Another example of a script is pay-to-
pubkey, which requires a digital signature from the public key’s corresponding
private key.

All transactions are recorded on the ledger, also called a blockchain, which
is replicated by the peer-to-peer network. In order to update the ledger with
a list of recent transactions contained in a block, miners compete to solve a
computationally difficult puzzle. The first miner to present a solution wins the
right to append his block to the blockchain, and receives 12.5 bitcoins in addition
to all transaction fees collected in the block. A block is expected to be found
approximately every 10 minutes.

A Bitcoin block is made up of two components. The first component is the
block header, which contains the previous block hash, a Merkle tree root com-
mitting to all transactions in this block, a nonce to support the proof-of-work
puzzle, and a timestamp. The second component is a list of transactions, the
first of which is called the coinbase and is used to distribute the block reward.
If the block contains no new transactions, the Merkle tree root is replaced with
the hash of the coinbase transaction.

2.2 Ethereum

Ethereum [29] was proposed to facilitate users writing, storing and executing
expressive, but bounded programs (i.e. smart contracts) within the Ethereum
Virtual Machine (EVM). This EVM alongside all storage and computation is
replicated across the peer-to-peer network and the blockchain is responsible for
storing transactions that authorise state transitions. If all transactions are re-
executed by a new peer joining the network, then the peer will eventually discover
the contract’s most recent state. All computation and storage is measured in
units of gas and this is purchased using Ethereum’s native currency (i.e. ether)
by the user when they are authorising a transaction. As of January 2018, the
vast majority of contracts are written in Solidity and like Bitcoin, all users have
an Ethereum account which is the hash of a public key (and the corresponding
private key is used to sign transactions).

Ethereum has a Nakamoto-style consensus protocol that relies on a dis-
tributed set of miners and its blockchain is a variation of GHOST [23], which
is a tree-based blockchain. GHOST introduced the concept of an uncle block,
which is a competing block that failed to make it into the blockchain but has its
block header included in a future block; we call this future block the publisher
block. For example, consider the case in which there are two competing blocks
at height i, biA and biB . If biA is accepted into the blockchain, the block header
for biB can still be included in a future block bi+δpubl, at which point we can call it

an uncle block biB,uncle. This new block type was proposed in GHOST to allow



stale blocks to contribute towards the blockchain’s overall weight, although un-
cle blocks in Ethereum did not contribute towards the blockchain’s weight until
the Byzantium upgrade in October 2017 [4]. This consensus rule was changed in
response to an uncle block mining strategy proposed by Lerner [12] that could
reward miners more coins than they deserve by exclusively mining uncle blocks.

The notable difference between GHOST and Ethereum’s implementation is
the uncle block reward policy. In Ethereum, a miner can include a maximum
of two uncle blocks in a newly mined block and the miner receives a publisher
reward of cpub = 1

32cblock for each uncle block included, where cblock is the normal
block reward. Once included in the blockchain, the uncle block’s miner is sent
an uncle block reward of cuncle = (1− δ

8 )cblock, where δ is the distance (number
of blocks) between the competing main block biA,main and the publisher block

bi+δpubl. As of January 2018, the full block reward is 3 ETH and the maximum
distance permitted for an uncle block to be included in the blockchain is 6.

Finally, an Ethereum block header can be split into four sections. This in-
cludes the previous block hash, gas statistics to highlight the computations in-
volved in this block, a solution to the memory-hard proof-of-work Ethash, and a
list of Patricia trie roots for the uncle block headers, transactions, and the global
state transaction. This is reflected in the size of an Ethereum block header, which
is 480 bytes compared to Bitcoin’s 80 bytes.

3 Subsidised Bribery

To set the scene, we consider the case of a briber, Alice, with less than a majority
of Ethereum’s computational power. Her goal is to control which transactions are
accepted into the blockchain. Rather than purchasing or renting new hardware to
achieve a majority, she decides to rent hashing power from other miners (which
we collectively name Bob) by bribing them. An existing approach for miners to
accept in-band bribes without trusting the briber involves whale transactions
[13], but this requires Alice to pay the full cost.

Instead, we propose a smart contract that rewards Bob for intentionally
mining uncle blocks. As a result, Ethereum’s uncle block reward policy is used to
directly subsidise bribes paid by Alice. In the best case, Bob is rewarded 7

8 of the
block reward cblock for mining an uncle block. If Bob can prove to Alice’s smart
contract that he mined an uncle block, then this contract will automatically send
Bob an additional payout cpayout. This second payment covers the remaining
fraction of the block reward cblock and includes an additional bonus cbribe for
accepting the bribe. As a result Bob will always earn more coins than mining
honestly, and the uncle block reward subsidises bribes paid by Alice.

3.1 Censorship Contract

The contract CensorshipCon3 rewards Bob for performing an uncle block mining
strategy. Bob must withhold a new block until a competing block by Alice is

3 A partial implementation is available at [15].



accepted into the blockchain, only then publishing his block for inclusion as
an uncle block. He must then prove to CensorshipCon that his uncle block was
included in the blockchain for the contract to send him the bribe. In the following
we highlight how to initialise the contract and how to allow bribed miners to
accept their subsidised bribe. Afterwards we provide an overview of Appendix A
to highlight that the briber requires at least 25% of the network’s computational
power in order to maximise the subsidy.

Briber assumption. For this contract we assume Alice includes all uncle blocks
and transactions that pay Bob his bribe into the blockchain. We consider this
a reasonable assumption as accepting these blocks/transactions maximises her
subsidy and encourages Bob to pursue the uncle block mining strategy. Finally
we assume that Alice has bribed a sufficient portion of miners for the attack to
succeed such that all blocks in the blockchain are mined by her.

Contract setup. Alice must set the network’s block reward cblock, the bribe
amount cbribe and also deposit d coins into the deployed contract CensorshipCon
before publicly advertising the bribe. This contract has a single function called
AcceptSubsidisedBribe() that we describe below.

Accepting the subsidised bribe. Bob must perform the uncle block mining strategy
in order to be eligible for the bribe. If he has mined a new block biB , then he
must withhold this block until Alice publishes a competing biA and her block
is accepted into the blockchain. Afterwards he can publish his block biB to the
network, which allows Alice to include it as an uncle block in one of her future
blocks; this future block is the publisher block bi+δpubl. Once his uncle block is
accepted into the blockchain he must prove that he is entitled to the payout
cpayout.

To prove this, Bob creates a transaction that invokes AcceptSubsidisedBribe.
This function requires as input Bob’s uncle block header biB,uncle, Alice’s com-

peting block header biA,main and the publisher block bi+δpubl.

Once invoked, the function verifies if Alice’s competing block biA,main and

the publisher block bi+δpubl are in the blockchain. This involves retrieving the

most recent 256 block hashes B256,4 hashing both block headers and check-
ing if H(biA,main) ∈ B256 and H(bi+δpubl) ∈ B256. Next the contract checks if the

publisher block bi+δpubl has indeed included Bob’s uncle block biB,uncle and if the

two competing blocks biA,main and biB,uncle extend the same block bi−1.5

If the above verification is satisfied and Bob has not already received a bribe
for biB,uncle, the contract calculates his payout. To do this it first computes the

number of blocks δ between biA,main and bi+δpubl, as this is used to calculate Bob’s

uncle block reward cuncle = (1− δ
8 )cblock. His uncle block reward is the subsidy

4 The contract environment provides access via block.blockhash(uint) for the latest
256 blocks (except the current block).

5 This is similar to how a proof-of-stale block is verified by Velner et al. [27]



provided by the network for the briber, and his final payout is calculated as
cpayout = cbribe + cblock − cuncle. The contract then sends these coins to the
miner’s Ethereum account, as stored in biB,uncle.

3.2 Lower-bound on briber’s hashrate.

Appendix A contains an analysis of the computational power required by Alice
to maximise the network’s subsidy and an overview is presented here. Briefly, we
begin by denoting mA, mB , and mH as the network’s hashrate shares controlled
by Alice, Bob and remaining honest miners. Only Alice and the honest miners
compete to create new blocks once Bob has decided to pursue an uncle block
mining strategy. His computational power is considered in the network’s difficulty
calculation [4], but Alice only needs to control more computational power than
the honest miners such that mA > mH to control the blockchain. To maximise
the subsidy she must also ensure that for every new block mined by her, Bob
only has the computational power to mine up to two uncle blocks. This final
requirement means she must have at least half of Bob’s hash rate such that
mA ≥ 1

2mB . If we combine both requirements then Alice’s hashrate must be
mA > 1

4 to ensure she can out-compete the honest miners and also include all
blocks mined by Bob as uncle blocks.

We highlight that there is an issue with the lower bound of mA > 1
4 as the

briber can potentially exclude all blocks mined by honest miners. As a result
it is reasonable to assume that honest miners may defect and also pursue the
uncle block mining strategy in order to accept her bribe. If this happens, then
the requirement mA ≥ 1

2mB may no longer hold as the bribed miners account
for more than half of the network’s hashrate such that mB > 1

2 . As a result it
is possible that three uncle blocks are created for every new block by Alice and
unfortunately one block must be discarded due to the uncle block limit. In order
to satisfy the goal of maximising the briber’s subsidy we consider the scenario
where miners will only accept the bribe if it is guaranteed that no uncle blocks
are discard. This requires Alice’s computational power to be mA ≥ 1

2 (1 −mA)
and leads to a new lower bound of mA >

1
3 , allowing any value mB ∈ [ 13 ,

2
3 ).

4 History Revision Bribery

The contract HistoryRevisionCon6 extends the work of Bonneau [3] and Liao
et al. [13], and allows Alice to reward miners for mining on a fork other than
the current longest chain. She can also retroactively dictate the starting block
for a new fork and also enforce an expressive forking condition. In the follow-
ing example we use a double-spend transaction to change the balance of two
accounts, A2 and A3, but in a manner similar to the “hard-fork oracle” outlined
by McCorry et al. [16], the forking condition could also depend on other events
such as a reversal of the infamous TheDAO theft [10].

6 A partial implementation is available at [15].



Briber assumptions. The briber is no longer involved in the attack after setting
up the contract. For the subsidised bribe we also assume that all bribed miners
will include the transactions from other miners. This is reasonable as the bribed
miners are collectively working together to ensure the alternative fork becomes
the longest (and heaviest) chain.

Contract setup. Alice creates three accounts A1, A2, A3, the first account A1

creates the bribery contract, A2 spends coins in the longest chain and A3 receives
the double-spent coins from A2 in the alternative fork. She then publishes the
transaction TA2,spend that spends her coins from A2; we denote the block that
includes this transaction as bi. Alice waits until the receiver considers TA2,spend

as confirmed in the blockchain.
Afterwards she publishes the double-spend transaction TA2,double that sends

all coins from A2 to A3 and the transaction TA1,fork which will create the
HistoryRevisionContract contract. Both transactions must be included in the
first bribed block at height i by Bob before he can be rewarded a bribe. Of course
the contract will check the balance of A2, A3 and that it was created in block i
before rewarding any bribes.

Accepting the bribe. An accept bribe transaction must be included in every new
block and it calls the AcceptBribe() function. The AcceptBribe() function
requires no inputs and invokes the contract to check that a bribe has not al-
ready been paid for this block before sending the full bribe cbribe to the miner’s
Ethereum account.7 If his block fails to be included in the blockchain, then he
must wait until this block is included as an uncle block.

Accepting the subsidised bribe. Similarly to the mechanism presented in Sec-
tion 3.1, Bob can call AcceptSubsidisedBribe() and be rewarded for mining
an uncle block. If the number of uncle blocks remains low (e.g., two or fewer
uncle blocks for every block in the blockchain), then the briber can maximise
the subsidy and ensure all stale blocks mined are also rewarded.

5 Goldfinger Bribery

As proposed by Kroll et al. [11], a “Goldfinger attack” can be modeled as a
game between an adversary who receives external utility from devaluing (or
destroying) a currency and the network that aims to run/maintain the value of
a currency. One approach for devaluing a cryptocurrency is to effectively reduce
its usefulness such that there is no guarantee a transaction will be accepted (or
remain confirmed) in the blockchain. This can be accomplished by performing
significant blockchain re-organisations (such as reversing 10 or more blocks in
the blockchain) [1] or mining consecutive empty blocks. We propose that a briber
can use a smart contract-enabled blockchain to fairly reward miners for mining
empty blocks in another cryptocurrency.

7 This can be accessed in the contract environment as block.coinbase.



5.1 Goldfinger Contract

We present GoldfingerCon, the first contract to realise a Goldfinger-style attack.
This contract rewards miners in a smart contract-enabled blockchain for reducing
the utility of another cryptocurrency by mining empty blocks.8 In the following
we discuss how to set up the Goldfinger contract, how Bob can prove he mined
an empty block to the contract, the technical hurdles for this attack and our
proof of concept implementation.

Contract setup. Alice creates GoldfingerCon, deposits d coins and must set the
payout for each empty block as cbribe. In order to activate the contract she must
set the identification hash of the initial block H(biB) and all miners should begin
mining empty blocks from H(biB) onwards. This contract is publicly announced
to all miners in the victim cryptocurrency.

Accepting the bribe. Bob must audit the code for GoldfingerCon to verify that
the contract will reward him for mining empty blocks in the victim cryptocur-
rency. Once he has decided to pursue the Goldfinger attack, then every new block
biB,btc he mines should only contain the coinbase transaction and he must wait
for the block to achieve a sufficient depth in the blockchain. Next he must pub-
lish an accept bribe transaction TB,accept that includes the block header bi,∗B,btc
and the corresponding coinbase transaction T iB,coinbasein its payload.

This transaction calls the AcceptBribe function in GoldfingerCon and as a
result the contract will verify whether H(biB) is an empty block before sending
Bob his bribe. In order to verify that it is indeed an empty block, the contract
checks that the identification hash of the coinbase transaction H(T iB,coinbase) is
stored in the block header’s Merkle root field. Once the verification is complete,
the contract extracts the public key PKB from the coinbase transaction’s output
(assuming it is a pay-to-pubkey script), computes an Ethereum account B from
PKB and sends B the bribe cbribe.

Validating and propagating empty blocks. In order to verify that the chain of
empty blocks represents the most computational weight it is important that
GoldfingerCon has access to all known forks in the victim cryptocurrency. We
recommend that block headers follow a strict pre-defined format to ensure they
are valid for both the contract and the victim cryptocurrency. Finally it is also
important for Alice to remain online and ensure all empty blocks are propagated
throughout the victim cryptocurrency’s network. Otherwise a cartel of miners
could mine headers for the contract, but they are not used (or potentially be
invalid) in the victim cryptocurrency network. Another option is to build an
escape hatch into the contract which allows her to terminate the bribe if cheating
is detected, but this may also undermine the contract’s credibility.



Step Purpose Gas Cost US$ Cost
1. Create contract 3,505,654 4.21
2. Submit block header 49,996 (checkpoint) 316,799 0.38
3. Submit block header 50,000 (out of order) 276,663 0.33
4. Submit block header 49,999 (out of order) 261,727 0.31
5. Submit block header 49,998 (out of order) 261,727 0.31
6. Submit block header 49,997 (in order) 314,017 0.38
7. Organise orphan blocks 284,206 0.34
8. Accept bribe for block 50,000 152,579 0.18

Table 1: A breakdown of the gas and financial cost for submitting several existing
Bitcoin blocks and accepting a bribe from GoldfingerCon.

.

5.2 Proof-of-concept implementation

We have implemented GoldfingerCon [15] in Solidity (0.4.10) and performed ex-
periments on an Ethereum private network in October 2017 (before the Byzan-
tium update). Our implementation demonstrates the cost of maintaining the
longest chain of block headers and parsing Bitcoin block headers and coinbase
transactions. It does not, however, rigorously validate block headers or coinbase
transactions according to the network’s consensus rules as discussed in Section
5.1. In the following we present the cost of creating the contract, publishing five
blocks in the reverse order, computing the current longest fork (i.e. a blockchain
re-organisation within the contract) and accepting a single bribe.

Table 1 presents the gas and financial breakdown for each transaction, as-
suming 1 ETH is worth $300 (a reasonable estimate as of October 2017 [8]) and
the gas price is 4 Gwei.9 The first step involved creating the GoldfingerCon

contract alongside setting the payout for each bribe and the contract’s owner as
the briber. The second step required the owner to set the starting block (i.e. the
checkpoint) as Bitcoin block 49,996 and thus the contract will only send bribes
for new empty blocks that extend this checkpoint.

The next series of steps (i.e. 2-6) involved an ad-hoc Ethereum account
sending the contract four Bitcoin blocks 50, 000 to 49, 997 in the reverse or-
der. This resulted in the contract recognising block 49, 997 as the latest block in
the blockchain. Step 7 notified the contract to evaluate the orphan blocks (i.e.
blocks 49, 998 to 50, 000) and this resulted in the contract setting block 50, 000
as the latest block in the blockchain. This demonstrates that handling small
block re-organisations within an Ethereum contract can be gas-efficient.

Finally step 8 involves simulating a miner publishing the coinbase transaction
for block 50, 000 to accept their bribe. The contract verified that the identifica-
tion hash of the coinbase transaction was stored in the Merkle tree root of block

8 It is also possible to bribe miners for building an alternative fork by dictating that
a block hash H(biB) cannot be in the blockchain.

9 1 gwei = 10−18 ether



50, 000. The public key from the coinbase transaction output is then extracted10

to construct an Ethereum address. The miner’s bribe is sent to the constructed
Ethereum address and the bribe for block 50, 000 is marked as claimed.

6 Discussion

Countering Goldfinger attacks. Bonneau [3] identified that the intended victims
of a Goldfinger attack could counter-bribe the miners in order to protect the
blockchain’s integrity, but he went further to argue that it is not desirable to
rely on wealthy members of the community to protect Nakamoto-style consen-
sus. Another counter-measure that is often suggested by the Bitcoin community
is to change the proof-of-work algorithm in response to an attack [7] and effec-
tively punish the miners for participating in the attack by making their mining
hardware redundant. We highlight that this is only a viable option if there is
not an another cryptocurrency with significant value that also relies on the same
proof of work algorithm. Also, it is only a one-shot approach as the briber could
then rent the next viable hardware (e.g., GPUs). In terms of a new proof-of-work
algorithm it may be useful to select one that is not easily verified within a smart
contract environment to hinder our smart contracts. As demonstrated by Luu
et al. [14], however, this defence can be overcome.

Removing asymmetrical trust assumption for history-revision bribery attacks
The closest mechanism to our history-revision contract is whale transactions,
where Alice includes large fees to entice miners to include her transactions, but
these have asymmetrical trust assumptions. Briefly, if the bribed miners do not
trust the briber, then the briber must sign a list of transactions in advance with
incrementing time-locks (to ensure that only a single bribe accepted is included
per block). On the other hand, if the briber does not trust the bribed miners,
then to ensure that they do not collude and mine a fork without the briber’s
desired revision, the briber can publish a new whale transaction after every new
block [13]. HistoryRevisionCon removes this asymmetry, as both the briber
and bribed miners can trust only the contract.

Towards a 51% collusion. All bribery attacks require a strategy that persuades
the network’s computational power to join the attack and accept this bribe. In
CensorshipCon and GoldfingerCon, miners are rewarded for every uncle/empty
block mined, whereas in HistoryRevisionCon miners are paid only if the attack
is successful. One approach for persuading miners to accept this bribe is to
provide a greater reward for miners that join the attack early, and a list of
deadlines can be set to ensure that there is a proportional increase in bribed
blocks over time. For example, GoldfingerCon may require 10% of all blocks
to be empty by time t1 and 20% by time t2. The contract can terminate if a
deadline is missed. So far our contracts have assumed that a sufficient share

10 All early coinbase transactions (including block 50,000) used pay-to-pubkey bitcoin
scripts.



of miners have joined the attack. We leave it as future work to devise reliable
strategies for ramping up support amongst miners.

In-band vs out-of-band payments. Out-of-band payment for bribery attacks such
as GoldfingerCon, script puzzles [25] and proof-of-stale blocks [27] are viable as
the utility received by miners is external to the cryptocurrency which is being
attacked. Bribery attacks that rely on in-band payments like whale transac-
tions [13], CensorshipCon, HistoryRevisionCon can potentially be viewed as
not practical due to their public nature undermining the bribed miner’s reward.
There have been a few circumstances such as TheDAO fork [10] where in-band
bribery could potentially have been used to reward miners for mining an alterna-
tive fork. We do not claim that in-band bribery attacks are immediately feasible
today, but this may change in the future as the political climate surrounding
cryptocurrencies continues to evolve.

Impact on Nakamoto consensus. Our contract CensorshipCon demonstrates
how subtle changes to Ethereum’s implementation of GHOST has directly en-
abled a subsidy for bribery attacks, whereas GoldfingerCon highlights that
miners do not need to trust the briber when attacking the consensus protocol of
another cryptocurrency. Bonneau [3] argued that bribery attacks are not recog-
nised as a viable attack due to their public (and sometimes trusted) nature and
this is reflected in the community as no new Nakamoto-style consensus protocol
has considered bribery attacks in their threat model. We argue that with rise
of smart contract-enabled blockchains, centralisation of mining hardware [26],
politically motivated actors [19,24] and wealthy pseudonymous thieves [2,10], it
appears that bribery-style attacks are indeed becoming increasingly viable. We
thus also argue that new Nakamoto-style consensus protocols should consider
bribery attacks when evaluating whether the protocol is incentive-compatible.

7 Conclusion

In this paper, we proposed three contracts to evaluate whether a smart contract-
enabled blockchain can have an impact on Nakamoto consensus. Our contracts
highlight that Ethereum’s uncle block reward policy can be used to directly
subsidise a bribery attack, that a briber can dictate the conditions that must be
satisfied (i.e. reverse theft) when bribed miners mine an alternative fork and the
feasibility of Goldfinger-style attacks that reward miners for reducing the utility
of another cryptocurrency. Our contracts (including the work in [3,13,25,27]) are
the first steps towards realising practical bribery strategies that overcome the
inherent trust issue between a briber and bribee. This is achieved as all contracts
self-enforce the bribery agreement and the fair exchange of coins.
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A Subsidy Analysis

This section is concerned with determining lower bounds on Alice’s hash rate in
order to both maximise the subsidy from Ethereum’s uncle block reward policy
and to provide her with full control over the blockchain. We find the lowest
bound she requires is more than 1

4 of the network’s hashrate, but this does not
allow all other miners to pursue the uncle block mining strategy and accept the
bribe. This can be overcome if she has more than 1

3 of the network’s hashrate
as this will allow all other miners to mine uncle blocks and for her to include
every uncle block in the blockchain. In the following we present our assumptions
for the subsidy analysis before presenting the subsidy value, whether a profit is
possible for the briber and how to derive the two lower bounds.

Assumptions We assume that miners do not perform selfish mining strategies
and that Alice has control of the minimum hashrate required to execute the
attack.

Lower bounds on hashrate Keeping the same model, we denote mA, mB and mH

the portion of network’s hashrate controlled by Alice, Bob and the remaining
honest miners respectively. Alice’s hashrate must satisfy two requirements before
she out compete the honest miners and maintain the longest chain with only her
blocks:



– Alice’s hashrate must be at least half of the bribed miner’s computational
power such that mA ≥ 1

2mB .

– Alice’s hashrate must be greater than the remaining honest miners on the
network such that mA > mH .

The first requirement ensures Alice can include all new blocks published by
Bob as uncle blocks. Recall she can only include up to two uncle blocks per block
she published. The second requirement allows Alice to win against the remaining
honest miners in creating blocks for the blockchain as she controls a majority
portion of the effective hashrate (i.e. the network’s hashrate attempting to mine
main blocks which excludes the bribed miners). Putting these together gives a
lower bound of mA >

1
4 on Alice’s portion of the hashrate. This is enough for her

to support Bob controlling mB = 1
2 of the hashrate, which ensures mA > mH .

The case above assumes that honest miners are not willing to accept the
bribe which may be not be realistic as miners are economically motivation. In
particular, honest miners may find themselves competing against Alice and if
she controls a majority of the effective hashrate then all their blocks will be
excluded. It is then necessary to revise our first requirement such that it now
takes the form mA ≥ 1

2 (1 −mA). This allows Alice to support the inclusion of
withheld blocks from all other miners (i.e. the remaining network’s hashrate)
as uncle blocks. Alice can then bribe the necessary portion of miners mB ≥ 1

3
which satisfies the requirement mA ≥ 1

2mB and allows mA > mH to hold.

Subsidy and expectation values Alice can maximise her subsidy by minimising
the number of blocks δ it takes until a bribed block is included in the blockchain
as an uncle block. Ideally, she should include uncle blocks in her next block.
otherwise δ may range between 1 and 6 if an uncle is delayed entry.

Before highlighting the impact of this subsidy for Alice, recall that she also
receives an additional publisher reward cpub = 1

32cblock for each uncle block she

includes. Hence for one uncle, Alice only has to pay Bob cpayout >
4δ−1
32 cblock to

guarantee him a higher payout than if he had won the full block reward. If she
includes two uncle blocks, she has to pay cpayout >

4δ−1
16 cblock to ensure both

blocks have a higher payout.

As Alice receives a block reward for every block she mines, she can still profit
from the reward while ensuring Bob receives a higher payout. If her payout to
Bob is less than the block reward (i.e. cpayout < cblock), she will have earned
more than she spent. The values of δ required for her to make a profit are then
easily found by solving the inequality with the expressions for cpayout previously
given. For example, if she only includes a single uncle in her block, then she is
guaranteed a profit for any δ as the reward is sufficient to ensure Bob receives
the full block reward cblock alongside an additional cbribe. If she includes two
uncle blocks, then she must be efficient as the δ for both blocks must be less
than 4 on average in order to satisfy the condition. Of course this analysis is
only concerned with the potential mining profit, and does not take into account
the preliminary costs of gaining the required hashrate.



As previously mentioned, the payout cpayout should be sufficient for Bob to
be guaranteed a higher reward than the block reward and giving him a clear in-
centive to accept bribes. If the attack is successful, Alice will control the effective
majority of the network’s hashrate and honest miners will see their expectation
value decrease as their blocks are excluded from the blockchain. They will then
be further incentivized to accept bribes.
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