704 research outputs found

    Tracing star formation in galaxies with molecular line and continuum observations

    Get PDF
    We report our recent progress on extragalactic spectroscopic and continuum observations, including HCN(J=1-0), HCO+^+(J=1-0), and CN(N=1-0) imaging surveys of local Seyfert and starburst galaxies using the Nobeyama Millimeter Array, high-J CO observations (J=3-2 observations using the Atacama Submillimeter Telescope Experiment (ASTE) and J=2-1 observations with the Submillimeter Array) of galaxies, and λ\lambda 1.1 mm continuum observations of high-z violent starburst galaxies using the bolometer camera AzTEC mounted on ASTE.Comment: 6 pages, 5 figures, To appear in proceedings of "Far-Infrared and Submillimeter Emission of the Interstellar Medium", EAS Publication Series, Bad Honnef, November 2007, Eds. C. Kramer, S. Aalto, R. Simon. See http://www.nro.nao.ac.jp/~f0212kk/FIR07/kk-ver20.pdf for a version with high resolution figure

    Black hole accretion and star formation as drivers of gas excitation and chemistry in Mrk231

    Get PDF
    We present a full high resolution SPIRE FTS spectrum of the nearby ultraluminous infrared galaxy Mrk231. In total 25 lines are detected, including CO J=5-4 through J=13-12, 7 rotational lines of H2O, 3 of OH+ and one line each of H2O+, CH+, and HF. We find that the excitation of the CO rotational levels up to J=8 can be accounted for by UV radiation from star formation. However, the approximately flat luminosity distribution of the CO lines over the rotational ladder above J=8 requires the presence of a separate source of excitation for the highest CO lines. We explore X-ray heating by the accreting supermassive black hole in Mrk231 as a source of excitation for these lines, and find that it can reproduce the observed luminosities. We also consider a model with dense gas in a strong UV radiation field to produce the highest CO lines, but find that this model strongly overpredicts the hot dust mass in Mrk231. Our favoured model consists of a star forming disk of radius 560 pc, containing clumps of dense gas exposed to strong UV radiation, dominating the emission of CO lines up to J=8. X-rays from the accreting supermassive black hole in Mrk231 dominate the excitation and chemistry of the inner disk out to a radius of 160 pc, consistent with the X-ray power of the AGN in Mrk231. The extraordinary luminosity of the OH+ and H2O+ lines reveals the signature of X-ray driven excitation and chemistry in this region.Comment: 5 pages, 2 figures, accepted for publication in Astronomy & Astrophysics Special Issue on Herschel first result

    High-resolution HNC 3-2 SMA observations of Arp220

    Get PDF
    We present high resolution (0."4) observations of HNC J=3-2 with the SubMillimeter Array (SMA). We find luminous HNC 3-2 line emission in the western part of Arp220, centered on the western nucleus, while the eastern side of the merger shows relatively faint emission. A bright (36 K), narrow (60 km/s) emission feature emerges from the western nucleus, superposed on a broader spectral component. A possible explanation is weak maser emission through line-of-sight amplification of the background continuum source. There is also a more extended HNC 3-2 emission feature north and south of the nucleus. This feature resembles the bipolar OH maser morphology around the western nucleus. Substantial HNC abundances are required to explain the bright line emission from this warm environment. We discuss this briefly in the context of an X-ray chemistry and radiative excitation. We conclude that the luminous and possibly amplified HNC emission of the western nucleus of the Arp220 merger reflects the unusual, and perhaps transient, environment of the starburst/AGN activity there. The faint HNC line emission towards Arp220-east reveals a real difference in physical conditions between the two merger nuclei.Comment: 7 pages, 6 figures, accepted for publication in Astronomy and Astrophysic

    Atomic Diagnostics of X-ray Irradiated Protoplanetary Disks

    Full text link
    We study atomic line diagnostics of the inner regions of protoplanetary disks with our model of X-ray irradiated disk atmospheres which was previously used to predict observable levels of the NeII and NeIII fine-structure transitions at 12.81 and 15.55mum. We extend the X-ray ionization theory to sulfur and calculate the fraction of sulfur in S, S+, S2+ and sulfur molecules. For the D'Alessio generic T Tauri star disk, we find that the SI fine-structure line at 25.55mum is below the detection level of the Spitzer Infrared Spectrometer (IRS), in large part due to X-ray ionization of atomic S at the top of the atmosphere and to its incorporation into molecules close to the mid-plane. We predict that observable fluxes of the SII 6718/6732AA forbidden transitions are produced in the upper atmosphere at somewhat shallower depths and smaller radii than the neon fine-structure lines. This and other forbidden line transitions, such as the OI 6300/6363AA and the CI 9826/9852AA lines, serve as complementary diagnostics of X-ray irradiated disk atmospheres. We have also analyzed the potential role of the low-excitation fine-structure lines of CI, CII, and OI, which should be observable by SOFIA and Herschel.Comment: Accepted by Ap

    A Spitzer Survey of Mid-Infrared Molecular Emission from Protoplanetary Disks II: Correlations and LTE Models

    Full text link
    We present an analysis of Spitzer-IRS observations of H2O, OH, HCN, C2H2, and CO2 emission, and Keck-NIRSPEC observations of CO emission, from a diverse sample of T Tauri and Herbig Ae/Be circumstellar disks. We find that detections and strengths of most mid-IR molecular emission features are correlated with each other, suggesting a common origin and similar excitation conditions. We note that the line detection efficiency is anti-correlated with the 13/30 um SED spectral slope, which is a measure of the degree of grain settling in the disk atmosphere. We also note a correlation between detection efficiency and H-alpha equivalent width, and tentatively with accretion rate, suggesting that accretional heating contributes to line excitation. If detected, H2O line fluxes are correlated with the mid-IR continuum flux, and other co-varying system parameters, such as L_star. However, significant sample variation, especially in molecular line ratios, remains. LTE models of the H2O emission show that line strength is primarily related to the best-fit emitting area, and this accounts for most source-to-source variation in H2O emitted flux. Best-fit temperatures and column densities cover only a small range of parameter space, near 10^{18} cm-2 and 450 K for all sources, suggesting a high abundance of H2O in many planet-forming regions. Other molecules have a range of excitation temperatures from ~500-1500 K, also consistent with an origin in planet-forming regions. We find molecular ratios relative to water of ~10^{-3} for all molecules, with the exception of CO, for which n(CO)/n(H2O)~1. However, LTE fitting caveats and differences in the way thermo-chemical modeling results are reported make comparisons with such models difficult, and highlight the need for additional observations coupled with the use of line-generating radiative transfer codes

    Radiative transfer models of mid-infrared H2O lines in the Planet-forming Region of Circumstellar Disks

    Get PDF
    The study of warm molecular gas in the inner regions of protoplanetary disks is of key importance for the study of planet formation and especially for the transport of H2O and organic molecules to the surfaces of rocky planets/satellites. Recent Spitzer observations have shown that the mid-infrared spectra of protoplanetary disks are covered in emission lines due to water and other molecules. Here, we present a non-LTE 2D radiative transfer model of water lines in the 10-36 mum range that can be used to constrain the abundance structure of water vapor, given an observed spectrum, and show that an assumption of local thermodynamic equilibrium (LTE) does not accurately estimate the physical conditions of the water vapor emission zones. By applying the model to published Spitzer spectra we find that: 1) most water lines are subthermally excited, 2) the gas-to-dust ratio must be one to two orders of magnitude higher than the canonical interstellar medium ratio of 100-200, and 3) the gas temperature must be higher than the dust temperature, and 4) the water vapor abundance in the disk surface must be truncated beyond ~ 1 AU. A low efficiency of water formation below ~ 300 K may naturally result in a lower water abundance beyond a certain radius. However, we find that chemistry, may not be sufficient to produce an abundance drop of many orders of magnitude and speculate that the depletion may also be caused by vertical turbulent diffusion of water vapor from the superheated surface to regions below the snow line, where the water can freeze out and be transported to the midplane as part of the general dust settling. Such a vertical cold finger effect is likely to be efficient due to the lack of a replenishment mechanism of large, water-ice coated dust grains to the disk surface.Comment: 12 pages, accepted for publication in Ap

    ALMA Observations of Warm Molecular Gas and Cold Dust in NGC 34

    Get PDF
    We present ALMA Cycle-0 observations of the CO (6-5) line emission (rest-frame frequency = 691.473 GHz) and of the 435μm\mu m dust continuum emission in the nuclear region of NGC 34, a local luminous infrared galaxy (LIRG) at a distance of 84 Mpc (1" = 407 pc) which contains a Seyfert 2 active galactic nucleus (AGN) and a nuclear starburst. The CO emission is well resolved by the ALMA beam (0."26×0."23\rm 0."26\times 0."23), with an integrated flux of fCO (65)=1004  (±151)  Jy  km  s1\rm f_{CO~(6-5)} = 1004\; (\pm 151) \; Jy\; km\; s^{-1}. Both the morphology and kinematics of the CO (6-5) emission are rather regular, consistent with a compact rotating disk with a size of 200 pc. A significant emission feature is detected on the red-shifted wing of the line profile at the frequency of the H13CN  (87)\rm H^{13}CN\; (8-7) line, with an integrated flux of 17.7±2.1(random)±2.7(sysmatic)  Jy  km  s1\rm 17.7 \pm 2.1 (random) \pm 2.7 (sysmatic)\; Jy\;km\; s^{-1}. However, it cannot be ruled out that the feature is due to an outflow of warm dense gas with a mean velocity of 400  km  s1\rm 400\; km\; s^{-1}. The continuum is resolved into an elongated configuration, and the observed flux corresponds to a dust mass of Mdust=106.97±0.13  Msun\rm M_{dust} = 10^{6.97\pm 0.13}\; M_{sun}. An unresolved central core (radius50  pc\rm radius \simeq 50\; pc) contributes 28%28\% of the continuum flux and 19%19\% of the CO (6-5) flux, consistent with insignificant contributions of the AGN to both emissions. Both the CO (6-5) and continuum spatial distributions suggest a very high gas column density (>=104  Msun  pc2\rm >= 10^4\; M_{sun}\; pc^{-2}) in the nuclear region at radius<=100  pc\rm radius <= 100\; pc.Comment: 10 pages, 13 figures, accepted for publication in Astrophysical Journa

    Voedselprijzen en speculatie op agrarische termijnmarkten : literatuurstudie en interviews

    Get PDF
    Het LEI heeft informatie over kapitaalstromen op financiële termijnmarkten voor agrarische goederen bij elkaar gebracht. Daarnaast heeft het een literatuuronderzoek gedaan waarbij zowel kwantitatieve (21) als kwalitatieve (19) studies en opiniestukken zijn meegenomen. Het LEI heeft de literatuur zowel inhoudelijk samengevat als beoordeeld op kwaliteit. Daarnaast heeft het LEI op basis van beschikbare bronnen een overzicht gegeven van de mogelijke effecten van het beperken van derivatenhandel door middel van positielimieten. Profundo heeft een aantal pensioenfondsen en andere vermogensbeheerders (zoals banken) geïnterviewd om inzicht te krijgen over hun beleid en hun visie over financiële derivaten markten en voedselprijzen

    Herschel observations of water vapour in Markarian 231

    Get PDF
    The Ultra Luminous InfraRed Galaxy Mrk 231 reveals up to seven rotational lines of water (H2O) in emission, including a very high-lying (E_{upper}=640 K) line detected at a 4sigma level, within the Herschel/SPIRE wavelength range, whereas PACS observations show one H2O line at 78 microns in absorption, as found for other H2O lines previously detected by ISO. The absorption/emission dichotomy is caused by the pumping of the rotational levels by far-infrared radiation emitted by dust, and subsequent relaxation through lines at longer wavelengths, which allows us to estimate both the column density of H2O and the general characteristics of the underlying far-infrared continuum source. Radiative transfer models including excitation through both absorption of far-infrared radiation emitted by dust and collisions are used to calculate the equilibrium level populations of H2O and the corresponding line fluxes. The highest-lying H2O lines detected in emission, with levels at 300-640 K above the ground state, indicate that the source of far-infrared radiation responsible for the pumping is compact (radius=110-180 pc) and warm (T_{dust}=85-95 K), accounting for at least 45% of the bolometric luminosity. The high column density, N(H2O)~5x10^{17} cm^{-2}, found in this nuclear component, is most probably the consequence of shocks/cosmic rays, an XDR chemistry, and/or an "undepleted chemistry" where grain mantles are evaporated. A more extended region, presumably the inner region of the 1-kpc disk observed in other molecular species, could contribute to the flux observed in low-lying H2O lines through dense hot cores, and/or shocks. The H2O 78 micron line observed with PACS shows hints of a blue-shifted wing seen in absorption, possibly indicating the occurrence of H2O in the prominent outflow detected in OH (Fischer et al., this volume).Comment: 5 pages, 3 figure
    corecore