311 research outputs found

    Collision-induced conformational changes in glycine

    Get PDF
    We present quantum dynamical calculations on the conformational changes of glycine in collisions with the He, Ne, and Ar rare-gas atoms. For two conformer interconversion processes (III-->I and IV-->I), we find that the probability of interconversion is dependent on several factors, including the energy of the collision, the angle at which the colliding atom approaches the glycine molecule, and the strength of the glycine-atom interaction. Furthermore, we show that attractive interactions between the colliding atom and the glycine molecule catalyze conformer interconversion at low collision energies. In previous infrared spectroscopy studies of glycine trapped in rare-gas matrices and helium clusters, conformer III has been consistently observed, but conformer IV has yet to be conclusively detected. Because of the calculated thermodynamic stability of conformer IV, its elusiveness has been attributed to the IV-->I conformer interconversion process. However, our calculations present little indication that IV-->I interconversion occurs more readily than III-->I interconversion. Although we cannot determine whether conformer IV interconverts during experimental Ne- and Ar-matrix depositions, our evidence suggests that the conformer should be present in helium droplets. Anharmonic vibrational frequency calculations illustrate that previous efforts to detect conformer IV may have been hindered by the overlap of its IR-absorption bands with those of other conformers. We propose that the redshifted symmetric –CH2 stretch of conformer IV provides a means for its conclusive experimental detection

    Tuning the excited state of photoactive building blocks for metal-templated self-assembly.

    Get PDF
    The reaction of 2,2':4,4'':4',4'''-quaterpyridyl (qtpy), with d(6) ruthenium(II) (Ru(II) ), and rhenium(I) (Re(I) ) metal centers has been investigated. The pendant pyridyl groups on the products have also been methylated to produce a second series of complexes containing coordinated Meqtpy(2+). The absorption spectra of the complexes are dominated by intraligand and charge-transfer bands. The ruthenium(II) complexes display broad unstructured luminescence consistent with emission from a Ru(d)→diimine(π*) manifold in acetonitrile solutions. In aqueous solutions, their emissions are weaker and the lifetimes are shorter. This effect is particularly acute for complexes incorporating coordinated dipyridylpyrazine, dppz, ligands. Although the emission of the ruthenium(II) complexes containing Meqtpy(2+) is generally shorter than their qtpy analogs, it is notable that solvent-dependent effects are much less intense. The rhenium(I) complexes also display broad unstructured luminescence but, compared with the ruthenium(II) systems, they have a relatively short lifetime in acetonitrile. Electrochemical studies reveal that all of the Ru(II) complexes display chemically reversible metal-based oxidations. Re(I) complexes only display irreversible metal-based oxidations. In most cases, the reduction processes were not fully chemically reversible. The electrochemical and optical studies reveal that the nature of the lowest excited state of these complexes--particularly, the systems incorporating dppz--is highly dependent on the nature of the coordinated ligands. Calculations indicate that, although the excited state of most of the complexes is centered on the qtpy or Meqtpy(2+) ligands, the excited state of the complexes containing dppz ligands is switched away from the dppz by qtpy methylation. A crystallographic study on one of the dicationic ruthenium(II) structures reveals that it forms an inclusion complex with benzene

    (13)C or Not (13)C: Selective Synthesis of Asymmetric Carbon-13-Labeled Platinum(II) cis-Acetylides.

    Get PDF
    Asymmetric isotopic labeling of parallel and identical electron- or energy-transfer pathways in symmetrical molecular assemblies is an extremely challenging task owing to the inherent lack of isotopic selectivity in conventional synthetic methods. Yet, it would be a highly valuable tool in the study and control of complex light-matter interactions in molecular systems by exclusively and nonintrusively labeling one of otherwise identical reaction pathways, potentially directing charge and energy transport along a chosen path. Here we describe the first selective synthetic route to asymmetrically labeled organometallic compounds, on the example of charge-transfer platinum(II) cis-acetylide complexes. We demonstrate the selective (13)C labeling of one of two acetylide groups. We further show that such isotopic labeling successfully decouples the two ν(C≡C) in the mid-IR region, permitting independent spectroscopic monitoring of two otherwise identical electron-transfer pathways, along the (12)C≡(12)C and (13)C≡(13)C coordinates. Quantum-mechanical mixing leads to intriguing complex features in the vibrational spectra of such species, which we successfully model by full-dimensional anharmonically corrected DFT calculations, despite the large size of these systems. The synthetic route developed and demonstrated herein should lead to a great diversity of asymmetric organometallic complexes inaccessible otherwise, opening up a plethora of opportunities to advance the fundamental understanding and control of light-matter interactions in molecular systems

    State-to-state reaction probabilities for the H+O(2)(v,j) -> O+OH(v',j') reaction on three potential energy surfaces

    Get PDF
    We report state-to-state and total reaction probabilities for J=0 and total reaction probabilities for J=2 and 4 for the title reaction, both for ground-state and initially rovibrationally excited reactants. The results for three different potential energy surfaces are compared and contrasted. The potential energy surfaces employed are the DMBE IV surface by Pastrana [J. Phys. Chem. 94, 8073 (1990)], the surface by Troe and Ushakov (TU) [J. Chem. Phys. 115, 3621 (2001)], and the new XXZLG ab initio surface by Xu [J. Chem. Phys. 122, 244305 (2005)]. Our results show that the total reaction probabilities from both the TU and XXZLG surfaces are much smaller in magnitude for collision energies above 1.2 eV compared to the DMBE IV surface. The three surfaces also show different behavior with regards to the effect of initial state excitation. The reactivity is increased on the XXZLG and the TU surfaces and decreased on the DMBE IV surface. Vibrational and rotational product state distributions for the XXZLG and the DMBE IV surface show different behaviors for both types of distributions. Our results show that for energies above 1.25 eV the dynamics on the DMBE IV surface are not statistical. However, there is also evidence that the dynamics on the XXZLG surface are not purely statistical for energies above the onset of the first excited product vibrational state v'=1. The magnitude of the total reaction probability is decreased for J>0 for the DMBE IV and the XXZLG surfaces for ground-state reactants. However, for initially rovibrationally excited reactants, the total reaction probability does not decrease as expected for both surfaces. As a result the total cross section averaged over all Boltzmann accessible rotational states may well be larger than the cross section reported in the literature for j=1. (C) 2007 American Institute of Physics

    A dinuclear ruthenium(II) phototherapeutic that targets duplex and quadruplex DNA

    Get PDF
    With the aim of developing a sensitizer for photodynamic therapy, a previously reported luminescent dinuclear complex that functions as a DNA probe in live cells was modified to produce a new isostructural derivative containing RuII(TAP)2 fragments (TAP = 1,4,5,8- tetraazaphenanthrene). The structure of the new complex has been confirmed by a variety of techniques including single crystal X-ray analysis. Unlike its parent, the new complex displays RuL-based 3MLCT emission in both MeCN and water. Results from electrochemical studies and emission quenching experiments involving guanosine monophosphate are consistent with an excited state located on a TAP moiety. This hypothesis is further supported by detailed DFT calculations, which take into account solvent effects on excited state dynamics. Cell-free steady-state and time-resolved optical studies on the interaction of the new complex with duplex and quadruplex DNA show that the complex binds with high affinity to both structures and indicate that its photoexcited state is also quenched by DNA, a process that is accompanied by the generation of the guanine radical cation sites as photo-oxidization products. Like the parent complex, this new compound is taken up by live cells where it primarily localizes within the nucleus and displays low cytotoxicity in the absence of light. However, in complete contrast to [{RuII(phen)2}2(tpphz)]4+, the new complex is therapeutically activated by light to become highly phototoxic toward malignant human melanoma cell line showing that it is a promising lead for the treatment of this recalcitrant cancer.EPSRC grant EP/M015572/1 Unviersity of Sheffield/EPSRC Doctoral Fellowship Prize EPSRC Capital Equipment Award ERASMUS

    Study of the H+O2 reaction by means of quantum mechanical and statistical approaches: The dynamics on two different potential energy surfaces

    Get PDF
    The possible existence of a complex-forming pathway for the H+O2 reaction has been investigated by means of both quantum mechanical and statistical techniques. Reaction probabilities, integral cross sections, and differential cross sections have been obtained with a statistical quantum method and the mean potential phase space theory. The statistical predictions are compared to exact results calculated by means of time dependent wave packet methods and a previously reported time independent exact quantum mechanical approach using the double many-body expansion (DMBE IV) potential energy surface (PES) [Pastrana et al., J. Phys. Chem. 94, 8073 (1990)] and the recently developed surface (denoted XXZLG) by Xu et al. [J. Chem. Phys. 122, 244305 (2005)]. The statistical approaches are found to reproduce only some of the exact total reaction probabilities for low total angular momenta obtained with the DMBE IV PES and some of the cross sections calculated at energy values close to the reaction threshold for the XXZLG surface. Serious discrepancies with the exact integral cross sections at higher energy put into question the possible statistical nature of the title reaction. However, at a collision energy of 1.6 eV, statistical rotationally resolved cross sections managed to reproduce the experimental cross sections for the H+O2(v=0,j=1)-->OH(v[prime]=1,j[prime])+O process reasonably well. ©2008 American Institute of Physic

    Mechanistic insight into proton-coupled mixed valency

    Get PDF
    Stabilisation of the mixed-valence state in [Mo2(TiPB)3(HDOP)]2+ (HTiPB = 2,4,6-triisopropylbenzoic acid, H2DOP = 3,6-dihydroxypyridazine) by electron transfer (ET) is related to the proton coordinate of the bridging ligands. Spectroelectrochemical studies suggest that ET is slower than 109 s−1. The mechanism has been probed using DFT calculations, which show that proton transfer induces a larger dipole in the molecule resulting in ET

    Highly fluorinated naphthalenes and bifurcated C–H⋯F–C hydrogen bonding

    Get PDF
    The synthesis and crystal structures of 1,2,4,5,6,8-hexafluoronaphthalene and 1,2,4,6,8-pentafluoronaphthalene are reported. Intermolecular interactions are dominated by offset stacking and by C–H⋯F–C hydrogen bonds. For hexafluoronaphthalene, molecules are linked in layers with (4,4) network topology via R12(6) C–H⋯(F–C)2 supramolecular synthons that are rationalised by consideration of the calculated electrostatic potential of the molecule. Such an arrangement is prevented by the additional hydrogen atom in pentafluoronaphthalene and molecules instead form tapes via an R12(8) (C–H⋯F)2 synthon. The geometric characteristics of C–H⋯(F–C)2 bifurcated hydrogen bonds have been analysed for crystal structures in the Cambridge Structural Database (6416 crystal structures; 9534 C–H⋯(F–C)2 bifurcated hydrogen bonds). A geometric analysis of these hydrogen bonds has enabled the extent of asymmetry of these hydrogen bonds to be assessed and indicates a preference for symmetrically bifurcated interactions
    corecore