83 research outputs found

    Dietary Differentiation and the Evolution of Population Genetic Structure in a Highly Mobile Carnivore

    Get PDF
    Recent studies on highly mobile carnivores revealed cryptic population genetic structures correlated to transitions in habitat types and prey species composition. This led to the hypothesis that natal-habitat-biased dispersal may be responsible for generating population genetic structure. However, direct evidence for the concordant ecological and genetic differentiation between populations of highly mobile mammals is rare. To address this we analyzed stable isotope profiles (δ13C and δ15N values) for Eastern European wolves (Canis lupus) as a quantifiable proxy measure of diet for individuals that had been genotyped in an earlier study (showing cryptic genetic structure), to provide a quantitative assessment of the relationship between individual foraging behavior and genotype. We found a significant correlation between genetic distances and dietary differentiation (explaining 46% of the variation) in both the marginal test and crucially, when geographic distance was accounted for as a co-variable. These results, interpreted in the context of other possible mechanisms such as allopatry and isolation by distance, reinforce earlier studies suggesting that diet and associated habitat choice are influencing the structuring of populations in highly mobile carnivores

    Stable isotope relationships between apatite phosphate (δ18O), structural carbonate (δ18O, δ13C), and collagen (δ2H, δ13C, δ15N, δ34S) in modern human dentine

    Get PDF
    Rationale The use of multi‐isotopic analysis (δ2H, δ13C, δ15N, δ18O, and δ34S values) of modern human body tissues for provenancing of unknown individuals in forensics is increasing. Tooth dentine develops during childhood and adolescence, therefore providing geographical information from that period of life. Tooth apatite δ18O values are commonly used for the reconstruction of drinking water values, and H–C–N–S isotope ratios in collagen supply additional information about the composition of diet. We tested if dentine collagen δ2H values provide similar information to apatite δ18O values with a proof‐of‐concept study. Methods Tooth samples were taken from modern‐day individuals born in different regions of the world. Apatite and collagen were prepared from dentine. Stable isotope analyses were performed on apatite phosphate oxygen (δ18Ophos); oxygen and carbon of the structural carbonate (δ18Ocarb, δ13Ccarb); and hydrogen, carbon, nitrogen, and sulfur of the collagen (δ2Hcoll, δ13Ccoll, δ15N, δ34S). Results δ18Ophos, δ18Ocarb, and δ2Hcoll values are highly correlated in modern human dentine. There are significant relationships of δ18O values in the apatite fraction and δ2H values in the collagen fraction with local δ18O and δ2H precipitation values, respectively. Pearson correlation coefficients indicate no direct relationship between δ15N values and the isotope ratios of any other element. Weak relationships exist between collagen δ34S values and δ18Ocarb or δ18Ophos values. Conclusions The highly significant correlation of δ18Ophos, δ18Ocarb, and δ2Hcoll values in the modern human dentine implies that measurement of δ2H values in collagen or δ18O values in bioapatite will provide reliable information about the climate at the person's whereabouts

    Combining stable isotopes with contamination indicators: A method for improved investigation of nitrate sources and dynamics in aquifers with mixed nitrogen inputs.

    Get PDF
    Excessive nitrate (NO3−) concentration in groundwater raises health and environmental issues that must be addressed by all European Union (EU) member states under the Nitrates Directive and the Water Framework Directive. The identification of NO3− sources is critical to efficiently control or reverse NO3− contamination that affects many aquifers. In that respect, the use of stable isotope ratios 15N/14N and 18O/16O in NO3− (expressed as δ15N-NO3− and δ18O-NO3−, respectively) has long shown its value. However, limitations exist in complex environments where multiple nitrogen (N) sources coexist. This two-year study explores a method for improved NO3− source investigation in a shallow unconfined aquifer with mixed N inputs and a long established NO3− problem. In this tillage-dominated area of free-draining soil and subsoil, suspected NO3− sources were diffuse applications of artificial fertiliser and organic point sources (septic tanks and farmyards). Bearing in mind that artificial diffuse sources were ubiquitous, groundwater samples were first classified according to a combination of two indicators relevant of point source contamination: presence/absence of organic point sources (i.e. septic tank and/or farmyard) near sampling wells and exceedance/non-exceedance of a contamination threshold value for sodium (Na+) in groundwater. This classification identified three contamination groups: agricultural diffuse source but no point source (D+P−), agricultural diffuse and point source (D+P+) and agricultural diffuse but point source occurrence ambiguous (D+P±). Thereafter δ15N-NO3− and δ18O-NO3− data were superimposed on the classification. As δ15N-NO3− was plotted against δ18O-NO3−, comparisons were made between the different contamination groups. Overall, both δ variables were significantly and positively correlated (p 0.6, 0.53 ≤ slope ≤ 0.76), i.e. where point source contamination was characterised or suspected. These lines originated from the 2–6‰ range for δ15N-NO3−, which suggests that i) NO3− contamination was dominated by an agricultural diffuse N source (most likely the large organic matter pool that has incorporated 15N-depleted nitrogen from artificial fertiliser in agricultural soils and whose nitrification is stimulated by ploughing and fertilisation) rather than point sources and ii) denitrification was possibly favoured by high dissolved organic content (DOC) from point sources. Combining contamination indicators and a large stable isotope dataset collected over a large study area could therefore improve our understanding of the NO3− contamination processes in groundwater for better land use management. We hypothesise that in future research, additional contamination indicators (e.g. pharmaceutical molecules) could also be combined to disentangle NO3− contamination from animal and human wastes

    Basic principles of stable isotope analysis in humanitarian forensic science.

    Get PDF
    While the identity of a victim of a localized disaster – such as a train or bus crash – may be established quickly through personal effects, fingerprints, dental records, and a comparison of decedent DNA to family reference specimen DNA, a different scenario presents itself in mass disasters, such as the Asian Tsunami of 2004. In the aftermath of the tsunami, visual appearance was initially used to assign “foreign” or “indigenous” classifications to the remains of thousands of victims. However, this visual identification approach was undermined by the speed with which bodies deteriorated under the hot and humid conditions. Time was spent populating ante-mortem DNA databases for different nationalities, which led to problems when creating a post-mortem DNA database because recovery of viable DNA was compromised due to rapid decomposition. As a consequence, only 1.3% of victims were identified by DNA; in contrast, 61% were identified based on dental examination, although this process took several months and a significant number of deceased from the 2004 Asian Tsunami still remain to be identified

    Aberrant Water Homeostasis Detected by Stable Isotope Analysis

    Get PDF
    While isotopes are frequently used as tracers in investigations of disease physiology (i.e., 14C labeled glucose), few studies have examined the impact that disease, and disease-related alterations in metabolism, may have on stable isotope ratios at natural abundance levels. The isotopic composition of body water is heavily influenced by water metabolism and dietary patterns and may provide a platform for disease detection. By utilizing a model of streptozotocin (STZ)-induced diabetes as an index case of aberrant water homeostasis, we demonstrate that untreated diabetes mellitus results in distinct combinations, or signatures, of the hydrogen (δ2H) and oxygen (δ18O) isotope ratios in body water. Additionally, we show that the δ2H and δ18O values of body water are correlated with increased water flux, suggesting altered blood osmolality, due to hyperglycemia, as the mechanism behind this correlation. Further, we present a mathematical model describing the impact of water flux on the isotopic composition of body water and compare model predicted values with actual values. These data highlight the importance of factors such as water flux and energy expenditure on predictive models of body water and additionally provide a framework for using naturally occurring stable isotope ratios to monitor diseases that impact water homeostasis

    Research potential and limitations of trace analyses of cremated remains

    Get PDF
    Human cremation is a common funeral practice all over the world and willpresumably become an even more popular choice for interment in thefuture. Mainly for purposes of identification, there is presently agrowing need to perform trace analyses such as DNA or stable isotopeanalyses on human remains after cremation in order to clarify pendingquestions in civil or criminal court cases. The aim of this study was toexperimentally test the potential and limitations of DNA and stableisotope analyses when conducted on cremated remains.For this purpose, tibiae from modern cattle were experimentally crematedby incinerating the bones in increments of 100 degrees C until a maximumof 1000 degrees C was reached. In addition, cremated human remains werecollected from a modern crematory. The samples were investigated todetermine level of DNA preservation and stable isotope values (C and Nin collagen, C and O in the structural carbonate, and Sr in apatite).Furthermore, we assessed the integrity of microstructural organization,appearance under UV-light, collagen content, as well as the mineral andcrystalline organization. This was conducted in order to provide ageneral background with which to explain observed changes in the traceanalyses data sets. The goal is to develop an efficacious screeningmethod for determining at which degree of burning bone still retains itsoriginal biological signals. We found that stable isotope analysis ofthe tested light elements in bone is only possible up to a heat exposureof 300 degrees C while the isotopic signal from strontium remainsunaltered even in bones exposed to very high temperatures. DNA-analysesseem theoretically possible up to a heat exposure of 600 degrees C butcan not be advised in every case because of the increased risk ofcontamination. While the macroscopic colour and UV-fluorescence ofcremated bone give hints to temperature exposure of the bone’s outersurface, its histological appearance can be used as a reliable indicatorfor the assessment of the overall degree of burning

    Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bajnai, D., Guo, W., Spötl, C., Coplen, T. B., Methner, K., Löffler, N., Krsnik, E., Gischler, E., Hansen, M., Henkel, D., Price, G. D., Raddatz, J., Scholz, D., & Fiebig, J. Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures. Nature Communications, 11(1), (2020): 4005, doi:10.1038/s41467-020-17501-0.Surface temperature is a fundamental parameter of Earth’s climate. Its evolution through time is commonly reconstructed using the oxygen isotope and the clumped isotope compositions of carbonate archives. However, reaction kinetics involved in the precipitation of carbonates can introduce inaccuracies in the derived temperatures. Here, we show that dual clumped isotope analyses, i.e., simultaneous ∆47 and ∆48 measurements on the single carbonate phase, can identify the origin and quantify the extent of these kinetic biases. Our results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Further, we show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias. Analysis of a belemnite rostrum implies that it precipitated near isotopic equilibrium and confirms the warmer-than-present temperatures during the Early Cretaceous at southern high latitudes.This work became possible through DFG grant “INST 161/871-1” and the Investment in Science Fund at Woods Hole Oceanographic Institution. The authors would like to thank Sven Hofmann and Manuel Schumann for their assistance in the joint Goethe University – Senckenberg BiK-F Stable Isotope Facility at the Institute of Geosciences, Goethe University Frankfurt. K.M. acknowledges funding through “DFG ME 4955/1-1”, E.K. through “DFG MU 2845/6-1”, D.S. through “DFG SCHO 1274/8-1” and “DFG SCHO 1274/11-1”, and M.H. through “DFG HA 8694/1-1”. C.S. acknowledges funding from the University of Innsbruck. A review of the manuscript by David Evans on behalf of the USGS is acknowledged

    Post-mortem volatiles of vertebrate tissue

    Get PDF
    Volatile emission during vertebrate decay is a complex process that is understood incompletely. It depends on many factors. The main factor is the metabolism of the microbial species present inside and on the vertebrate. In this review, we combine the results from studies on volatile organic compounds (VOCs) detected during this decay process and those on the biochemical formation of VOCs in order to improve our understanding of the decay process. Micro-organisms are the main producers of VOCs, which are by- or end-products of microbial metabolism. Many microbes are already present inside and on a vertebrate, and these can initiate microbial decay. In addition, micro-organisms from the environment colonize the cadaver. The composition of microbial communities is complex, and communities of different species interact with each other in succession. In comparison to the complexity of the decay process, the resulting volatile pattern does show some consistency. Therefore, the possibility of an existence of a time-dependent core volatile pattern, which could be used for applications in areas such as forensics or food science, is discussed. Possible microbial interactions that might alter the process of decay are highlighted
    • …
    corecore