9,312 research outputs found

    Qualification Procedures of the CMS Pixel Barrel Modules

    Full text link
    The CMS pixel barrel system will consist of three layers built of about 800 modules. One module contains 66560 readout channels and the full pixel barrel system about 48 million channels. It is mandatory to test each channel for functionality, noise level, trimming mechanism, and bump bonding quality. Different methods to determine the bump bonding yield with electrical measurements have been developed. Measurements of several operational parameters are also included in the qualification procedure. Among them are pixel noise, gains and pedestals. Test and qualification procedures of the pixel barrel modules are described and some results are presented.Comment: 7 Pages, 7 Figures. Contribution to Pixel 2005, September 5-8, 2005, Bonn, Germna

    Second harmonic generation on incommensurate structures: The case of multiferroic MnWO4

    Full text link
    A comprehensive analysis of optical second harmonic generation (SHG) on an incommensurate (IC) magnetically ordered state is presented using multiferroic MnWO4 as model compound. Two fundamentally different SHG contributions coupling to the primary IC magnetic order or to secondary commensurate projections of the IC state, respectively, are distinguished. Whereas the latter can be described within the formalism of the 122 commensurate magnetic point groups the former involves a breakdown of the conventional macroscopic symmetry analysis because of its sensitivity to the lower symmetry of the local environment in a crystal lattice. Our analysis thus foreshadows the fusion of the hitherto disjunct fields of nonlinear optics and IC order in condensed-matter systems

    Compact Frontend-Electronics and Bidirectional 3.3 Gbps Optical Datalink for Fast Proportional Chamber Readout

    Get PDF
    The 9600 channels of the multi-wire proportional chamber of the H1 experiment at HERA have to be read out within 96 ns and made available to the trigger system. The tight spatial conditions at the rear end flange require a compact bidirectional readout electronics with minimal power consumption and dead material. A solution using 40 identical optical link modules, each transferring the trigger information with a physical rate of 4 x 832 Mbps via optical fibers, has been developed and commisioned. The analog pulses from the chamber can be monitored and the synchronization to the global HERA clock signal is ensured.Comment: 13 pages, 10 figure

    Mutual induction of magnetic 3d and 4f order in multiferroic hexagonal ErMnO3

    Full text link
    The complex interplay between the 3d and 4f moments in hexagonal ErMnO3 is investigated by magnetization, optical second harmonic generation, and neutron-diffraction measurements. We revise the phase diagram and provide a microscopic model for the emergent spin structures with a special focus on the intermediary phase transitions. Our measurements reveal that the 3d exchange between Mn^{3+} ions dominates the magnetic symmetry at 10 K < T < T_N with Mn^3+ order according to the Gamma_4 representation triggering 4f ordering according to the same representation on the Er^{3+}(4b) site. Below 10 K the magnetic order is governed by 4f exchange interactions of Er^{3+} ions on the 2a site. The magnetic Er^{3+}(2a) order according to the representation Gamma_2 induces a magnetic reorientation (Gamma_4 --> Gamma_2) at the Er^{3+}(4b) and the Mn^{3+} sites. Our findings highlight the fundamentally different roles the Mn^{3+}, R^{3+}(2a), and R^{3+}(4b) magnetism play in establishing the magnetic phase diagram of the hexagonal RMnO3 system

    A team approach to the indication for gender reassignment surgery in transsexuals resulting in long-term outcome improvement

    Get PDF
    At the University of Basel (Switzerland), a multidisciplinary team was established for pre-operative selection and treatment of patients with gender dysphoria. As a result, the indications for surgical gender reassignment could be judged with considerably greater accuracy than previously possible. In the 9-year period of this prospective study only 14 of 57 patients with gender dysphoria were selected for surgical treatment. At the time of this survey, six patients are still under psychiatric preoperative evaluation, and six further male-to-female transsexuals are under hormonal treatment awaiting surgery. Following the operation, only one of nine male-to-female patients is socially unstable and that patient's quality of life is worse than prior to gender reassignment. Of the female-to-male transsexuals, all four are stable in their professional and family relations. In conclusion, a comprehensive evaluation of patients with gender dysphoria and the conclusive indications established within the team considerably improved the postoperative outcome of gender reassignmen

    Signal height in silicon pixel detectors irradiated with pions and protons

    Get PDF
    Pixel detectors are used in the innermost part of multi purpose experiments at the Large Hadron Collider (LHC) and are therefore exposed to the highest fluences of ionising radiation, which in this part of the detectors consists mainly of charged pions. The radiation hardness of the detectors has thoroughly been tested up to the fluences expected at the LHC. In case of an LHC upgrade the fluence will be much higher and it is not yet clear up to which radii the present pixel technology can be used. In order to establish such a limit, pixel sensors of the size of one CMS pixel readout chip (PSI46V2.1) have been bump bonded and irradiated with positive pions up to 6E14 Neq/cm^2 at PSI and with protons up to 5E15 Neq/cm^2. The sensors were taken from production wafers of the CMS barrel pixel detector. They use n-type DOFZ material with a resistance of about 3.7kOhm cm and an n-side read out. As the performance of silicon sensors is limited by trapping, the response to a Sr-90 source was investigated. The highly energetic beta-particles represent a good approximation to minimum ionising particles. The bias dependence of the signal for a wide range of fluences will be presented.Comment: Contribution to the 7th International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices October 15-17, 2008 Firenze, Ital

    First-Principles Calculations of Hyperfine Interactions in La_2CuO_4

    Full text link
    We present the results of first-principles cluster calculations of the electronic structure of La_2CuO_4. Several clusters containing up to nine copper atoms embedded in a background potential were investigated. Spin-polarized calculations were performed both at the Hartree-Fock level and with density functional methods with generalized gradient corrections to the local density approximation. The distinct results for the electronic structure obtained with these two methods are discussed. The dependence of the electric-field gradients at the Cu and the O sites on the cluster size is studied and the results are compared to experiments. The magnetic hyperfine coupling parameters are carefully examined. Special attention is given to a quantitative determination of on-site and transferred hyperfine fields. We provide a detailed analysis that compares the hyperfine fields obtained for various cluster sizes with results from additional calculations of spin states with different multiplicities. From this we conclude that hyperfine couplings are mainly transferred from nearest neighbor Cu^{2+} ions and that contributions from further distant neighbors are marginal. The mechanisms giving rise to transfer of spin density are worked out. Assuming conventional values for the spin-orbit coupling, the total calculated hyperfine interaction parameters are compared to informations from experiments.Comment: 23 pages, 9 figure

    A Foundational View on Integration Problems

    Full text link
    The integration of reasoning and computation services across system and language boundaries is a challenging problem of computer science. In this paper, we use integration for the scenario where we have two systems that we integrate by moving problems and solutions between them. While this scenario is often approached from an engineering perspective, we take a foundational view. Based on the generic declarative language MMT, we develop a theoretical framework for system integration using theories and partial theory morphisms. Because MMT permits representations of the meta-logical foundations themselves, this includes integration across logics. We discuss safe and unsafe integration schemes and devise a general form of safe integration
    • …
    corecore