48 research outputs found
Aspisol inhibits tumor growth and induces apoptosis in breast cancer
Nonsteroidal anti-inflammatory drugs inhibit cell proliferation and induce apoptosis in various cancer cell lines, which is considered to be an important mechanism for their anti-tumor activity and cancer prevention. However, the molecular mechanisms through which these compounds induce apoptosis are not well understood. Aim: to determine the effects of nonselective cyclooxygenase-2 (COX-2) inhibitor, aspisol on breast cancer cells in vitro and in vivo. Methods: The cytotoxic activity of aspisol was evaluated by MTT assay. The apoptosis index of cells was measured by flow cytometry. Immunohistochemical staining was used to detect expressions of COX-2 and caspase-3 in MDA-MB-231 cells. The expression of bcl-2 and bax was analyzed by Western blot analysis. The content of prostaglandin E2 (PGE2) in MDA-MB-231 cells was estimated by ELISA. In vivo apoptosis of the tumor cells was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). Results: Our results showed that aspisol reduced viability of MDA-MB-231 cells in time- and dose- dependent fashions and induced apoptosis by increase of caspase-3 and bax expressions while decrease of COX-2 and bcl-2 expression in vitro. In addition, exposure to aspisol decreased the basal release of PGE2. In vivo, aspisol also inhibited the proliferation of breast cancer cells and induced their apoptosis. Conclusions: Our in vitro and in vivo data indicated that the antitumor effects of aspisol on breast cancer cells was probably mediated by the induction of apoptosis, and it could be linked to the downregulation of the COX-2 or bcl-2 expression and up-regulation of caspase-3 or bax expression.ΠΠ΅ΡΡΠ΅ΡΠΎΠΈΠ΄Π½ΡΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΡΡΡ ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΈ Π²ΡΠ·ΡΠ²Π°ΡΡ Π°ΠΏΠΎΠΏΡΠΎΠ· Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΡ
ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
Π»ΠΈΠ½ΠΈΡΡ
, ΡΡΠΎ ΡΡΠΈΡΠ°Π΅ΡΡΡ Π²Π°ΠΆΠ½ΡΠΌ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠΌ ΠΈΡ
ΠΏΡΠΎΡΠΈΠ²ΠΎΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈ ΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΠΊΠΈ
ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠ°ΠΊΠ°. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠ΅ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΡ Π°ΠΏΠΎΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΡΠΈΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΠΈΠ·ΡΡΠ΅Π½Ρ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ.
Π¦Π΅Π»Ρ: ΠΈΠ·ΡΡΠΈΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π΅ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠ° ΡΠΈΠΊΠ»ΠΎΠ³Π΅ΠΊΡΠΈΠ½Π°Π·Ρ-2 (COX-2) β Π°ΡΠΏΠΈΠ·ΠΎΠ»Π° β Π½Π° Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΊΠ»Π΅ΡΠΊΠΈ
ΡΠ°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ in vitro ΠΈ in vivo. ΠΠ΅ΡΠΎΠ΄Ρ: Π²ΡΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ MDA-MB-231 ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ MTT-ΡΠ΅ΡΡΠ°.
ΠΠΏΠΎΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈΠ½Π΄Π΅ΠΊΡ ΠΈΠ·ΠΌΠ΅ΡΡΠ»ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΎΡΠΎΡΠ½ΠΎΠΉ ΡΠΈΡΠΎΠΌΠ΅ΡΡΠΈΠΈ ΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΠ³ΠΈΡΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΎΠΊΡΠ°ΡΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ Ρ Π°Π½ΡΠΈΡΠ΅Π»Π°ΠΌΠΈ
ΠΏΡΠΎΡΠΈΠ² COX-2 ΠΈ ΠΊΠ°ΡΠΏΠ°Π·Ρ-3. ΠΠΊΡΠΏΡΠ΅ΡΡΠΈΡ bcl-2 ΠΈ bax ΠΈΠ·ΡΡΠ°Π»ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΠ΅ΡΡΠ΅ΡΠ½-Π±Π»ΠΎΡ-Π°Π½Π°Π»ΠΈΠ·Π°. Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΏΡΠΎΡΡΠ°Π³Π»Π°Π½Π΄ΠΈΠ½Π°
E2
(PGE2
) Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
MDA-MB-231 ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ELISA. In vivo Π°ΠΏΠΎΠΏΡΠΎΠ· ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ
ΠΏΡΡΠ΅ΠΌ Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ ΡΠ°Π·ΡΡΠ²ΠΎΠ² ΠΠΠ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΠ½ΡΠ΅Π²ΠΎΠΉ Π΄Π΅Π·ΠΎΠΊΡΠΈΠ½ΡΠΊΠ»Π΅ΠΎΡ-ΠΈΠ΄ΠΈΠ»ΡΡΠ°Π½ΡΠ΅ΡΠ°Π·Ρ (ΠΌΠ΅ΡΠΎΠ΄ TUNEL). Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ:
ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΠ½ΠΊΡΠ±Π°ΡΠΈΠΈ ΠΈ Π΄ΠΎΠ·Ρ Π°ΡΠΏΠΈΠ·ΠΎΠ» ΡΠ³Π½Π΅ΡΠ°Π» ΡΠΎΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ MDA-MB-231 in vitro ΠΈ Π²ΡΠ·ΡΠ²Π°Π»
ΠΈΡ
Π°ΠΏΠΎΠΏΡΠΎΠ· Π½Π° ΡΠΎΠ½Π΅ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΊΠ°ΡΠΏΠ°Π·Ρ-3 ΠΈ bax, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ COX-2 ΠΈ bcl-2. Π ΡΡΠ»ΠΎΠ²ΠΈΡΡ
in vivo Π°ΡΠΏΠΈΠ·ΠΎΠ» ΡΠ°ΠΊΠΆΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π» ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΡ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ ΡΠ°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ ΠΈ Π²ΡΠ·ΡΠ²Π°Π» ΠΈΡ
Π°ΠΏΠΎΠΏΡΠΎΠ·.
ΠΡΠ²ΠΎΠ΄Ρ: Π΄Π°Π½Π½ΡΠ΅, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ in vitro ΠΈ in vivo, ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΠΎΠΌ ΡΡΡΠ΅ΠΊΡΠ΅ Π°ΡΠΏΠΈΠ·ΠΎΠ»Π° Π½Π° ΠΊΠ»Π΅ΡΠΊΠΈ ΡΠ°ΠΊΠ°
ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ, ΡΡΠΎ ΡΠΊΠΎΡΠ΅Π΅ Π²ΡΠ΅Π³ΠΎ ΠΎΠΏΠΎΡΡΠ΅Π΄ΠΎΠ²Π°Π½ΠΎ Π΅Π³ΠΎ ΠΏΡΠΎΠ°ΠΏΠΎΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΠΈ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ²ΡΠ·Π°Π½ΠΎ ΡΠΎ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ
ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ COX-2 ΠΈ bcl-2, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΠΊΠ°ΡΠΏΠ°Π·Ρ-3 ΠΈ bax
Spinor Fields and Symmetries of the Spacetime
In the background of a stationary black hole, the "conserved current" of a
particular spinor field always approaches the null Killing vector on the
horizon. What's more, when the black hole is asymptotically flat and when the
coordinate system is asymptotically static, then the same current also
approaches the time Killing vector at the spatial infinity. We test these
results against various black hole solutions and no exception is found. The
spinor field only needs to satisfy a very general and simple constraint.Comment: 19 page
ATHENA detector proposal β a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider
ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges
Expression of immediate-early genes in the inferior colliculus and auditory cortex in salicylate-induced tinnitus in rat
Tinnitus could be associated with neuronal hyperactivity in the auditory center. As a neuronal activity marker, immediate-early gene (IEG) expression is considered part of a general neuronal response to natural stimuli. Some IEGs, especially the activity-dependent cytoskeletal protein (Arc) and the early growth response gene-1 (<em>Egr-1</em>), appear to be highly correlated with sensory-evoked neuronal activity. We hypothesize, therefore, an increase of Arc and <em>Egr-1</em> will be observed in a tinnitus model. In our study, we used the gap prepulse inhibition of acoustic startle (GPIAS) paradigm to confirm that salicylate induces tinnitus-like behavior in rats. However, expression of the <em>Arc</em> gene and <em>Egr-1</em> gene were decreased in the inferior colliculus (IC) and auditory cortex (AC), in contradiction of our hypothesis. Expression of <em>N</em>-methyl d-aspartate receptor subunit 2B (NR2B) was increased and all of these changes returned to normal 14 days after treatment with salicylate ceased. These data revealed long-time administration of salicylate induced tinnitus markedly but reversibly and caused neural plasticity changes in the IC and the AC. Decreased expression of Arc and Egr-1 might be involved with instability of synaptic plasticity in tinnitus