20 research outputs found

    Linear scanning ATR-FTIR for chemical mapping and high-throughput studies of Pseudomonas sp. biofilms in microfluidic channels

    Get PDF
    A fully automated linear scanning attenuated total reflection (ATR) accessory is presented for Fourier transform infrared (FTIR) spectroscopy. The approach is based on the accurate displacement of a multi-bounce ATR crystal relative to a stationary infrared beam. To ensure accurate positioning and to provide a second sample characterization mode, a custom-built microscope was integrated into the system and the computerized work flow. Custom software includes automated control and measurement routines with a straightforward user interface for selecting parameters and monitoring experimental progress. This cost-effective modular system can be implemented on any research-grade spectrometer with a standard sample compartment for new bioanalytical chemistry studies. The system was validated and optimized for use with microfluidic flow cells containing growing Pseudomonas sp. bacterial biofilms. The complementarity among the scan positioning accuracy, measurement spatial resolution and the microchannel dimensions paves the way for parallel biological assays with real-time control over environmental parameters and minimal manual labor. By rotating the channel orientation relative to the beam path, the system could also be used for acquisition of linear biochemical maps and stitched microscope images along the channel length.Comment: 9 pages, 6 figure

    Theoretically nanoscale study on ionization of muscimol nano drug in aqueous solution

    Get PDF
    In the present work, acid dissociation constant (pKa) values of muscimol derivatives were calculated using the Density Functional Theory (DFT) method. In this regard, free energy values of neutral, protonated and deprotonated species of muscimol were calculated in water at the B3LYP/6-31G(d) basis sets. The hydrogen bond formation of all species had been analyzed using the Tomasi's method. It was revealed that the theoretically calculated pKa values were in a good agreement with the existing experimental pKa values, which were determined from capillary electrophoresis, potentiometric titration and UV-visible spectrophotometric measurements.No presente trabalho, calculou-se a constante de dissociação do ácido (pKa) dos derivados de muscimol, utilizando-se o método da teoria do funcional de densidade (DFT). Com esse objetivo, calcularam-se os valores das espécies neutra, protonada e desprotonada do muscimol em água em base B3LYP/6-31G(d). A formação da ligação de hidrogênio de todas as espécies foi analisada utilizando o método de Tomasi. Demonstrou-se que os valores de pKa calculados teoricamente estavam em boa concordância com os valores experimentais disponíveis, determinados por eletroforese capilar, titulação potenciométrica e medidas por espectrofotometria UV-visível

    Flange Wrinkling in Flexible Roll Forming Process

    Get PDF
    AbstractFlexible roll forming is an advanced sheet metal forming process for producing variable cross section profiles. Flange wrinkling at the transition zone where the cross section changes is a major defect in the flexible roll forming process. In this paper, the flange wrinkling at the transition zone is studied using finite element analysis. The results showed that the strip deformation at the transition zone can be considered as a combination of two strip deformations observed in the conventional roll forming process and the flanging process. According to finite element analysis results, when the flange wrinkling occurs, compressive longitudinal strain is smaller than the necessary compressive longitudinal strain calculated by mathematical modeling to obtain the intended profile geometry in the compression zone. Therefore, comparison of compressive longitudinal strain obtained from the finite element analysis and the necessary compressive longitudinal strain is a good criterion to predict the flange wrinkling occurrence. A flexible roll forming setup was developed. Longitudinal strain history is obtained from the finite element simulation and is compared with the experimental data from the flexible roll forming setup. Results show a good agreement and confirm the finite element analysis

    A microscale approach to optimizing the performance of microbial fuel cells

    Get PDF
    Une pile microbienne (MFC) est un type de système bioélectrochimique (BES) dans lequel l'oxydation d'un large éventail de molécules organiques produit un courant électrique utilisable à travers un circuit externe. En tant que tel, ces biofilms respirant les anodes (BRA) ont établi les MFC comme une technologie d’énergie propre de nouvelle génération prometteuse, car ils peuvent produire de l’électricité tout en atteignant simultanément une biorestauration. Les MFC offrent également des solutions durables pour les systèmes d'alimentation distribués et le traitement des eaux usées pouvant être exploités localement àla source de la génération de celles-ci, telles que les maisons et les sites industriels, afin de réduire la dépendance aux installations centralisées. Les MFC ont même fait leurs preuves en tant que sources d'alimentation pour les dispositifs implantés autonomes et la détection à distance. Ce travail vise à améliorer l'efficacité des MFC en se concentrant sur les considérations à l'échelle microscopique. Les progrès techniques dans les électrodes microstructurées et la conception de MFC microfluidique sont démontrés. Ces développements ouvrent des possibilités d'optimisation et de recherche fondamentale sur les MFC et la technologie BES associée. Plus précisément, ces travaux démontrent des améliorations basées sur la structure et les matériaux des électrodes et leur intégration dans des canaux microfluidiques protégés contre les gaz présentant une configuration sans membrane. Le résultat est le MFC microfluidique le plus stable jamais décrit dans la littérature, capable de temps de fonctionnement les plus longs sur la plage de débit la plus large. Nous utilisons cette conception d'appareil robuste pour étudier l'effet du débit afin de surmonter les limitations de la disponibilité des nutriments sur les rendements de puissance, les problèmes de dépassement de puissance, ainsi que d'autres obstacles qui ont un impact plus large sur les MFC dans le secteur des énergies alternativesA microbial fuel cell (MFC) is a type of bioelectrochemical system (BES) in which oxidation of a broad range of organic molecules produces a usable electric current through an external circuit. As such, such anode respiring biofilms (ARBs) have positioned MFCs as a promising next-generation clean energy technology because they can produce electricity while simultaneously achieving bioremediation. MFCs also offer sustainable solutions for distributed power systems and wastewater treatment that can be operated locally at the source of wastewater generation, such as homes and industrial sites, to reduce reliance on centralized facilities. MFCs have even been demonstrated as power sources for autonomous implanted devices and remote sensing. This work seeks to improve the efficiency of MFCs by focusing on the microscale considerations. Technical advancements in microstructured electrodes and microfluidic MFC design are demonstrated. These developments open up possibilities for optimization and fundamental research into MFCs and related BES technology. Specifically, this work demonstrates improvements based on electrode structure and materials and their integration into gas-protected microfluidic channels featuring a membraneless configuration. The result is the most stable microfluidic MFC yet reported in the literature, capable of the longest operating times over the largest range of flow rates. We use this robust device design in study of the effect of flow to overcome the limitations of nutrient availability on power outputs, the so-called power overshoot problems and other obstacles to achieving wider impact of MFCs in the alternative energy sector

    Quality of life in pregnant women results of a study from Kashan, Iran

    No full text
    Objective: Pregnancy is associated with numerous mental and physical changes in women. These changes are likely to be associated with reduced quality of life. The purpose of this study was to assess the quality of life in pregnant women in Kashan, central Iran. Methodology: We conducted a descriptive- analytical cross -sectional study on 600 pregnant women. The participants completed the Short Form Health Survey to report quality of life during antenatal visit. Results: The lowest life quality score was obtained in "functional limitations due to physical health problems" and "vitality". Some dimensions of health in SF-36 was correlated with age, gestational age, gravid, education, income. (P< 0/05). Conclusion: Paying attention to factors negatively affecting dimensions of quality of life during pregnancy and planning to reduce their impact can result in enhancing the quality of life among pregnant women

    Theoretically nanoscale study on ionization of muscimol nano drug in aqueous solution

    No full text
    In the present work, acid dissociation constant (pKa) values of muscimol derivatives were calculated using the Density Functional Theory (DFT) method. In this regard, free energy values of neutral, protonated and deprotonated species of muscimol were calculated in water at the B3LYP/6-31G(d) basis sets. The hydrogen bond formation of all species had been analyzed using the Tomasi's method. It was revealed that the theoretically calculated pKa values were in a good agreement with the existing experimental pKa values, which were determined from capillary electrophoresis, potentiometric titration and UV-visible spectrophotometric measurements

    Relation between home work and preterm labor

    No full text
    Background & Aim: Preterm birth is the main cause of neonatal mortality and morbidity; so, prevention of preterm labor is a priority in health care. This study aimed to determine relationship between house works with preterm labor. Methods & Materials: In this case-control study, 150 term pregnant women (control group) and 150 preterm pregnant women (case group) delivered in Izadi hospital in Qom were selected in 2008-2009. The data were collected using the "physical activity in pregnancy" scale. Data were analyzed using the Chi-squared test, t-test, and logistic regression. The P-value less than 0.05 was considered as significant level and the adjusted OR was reported for all variables. We used the SPSS- 16 for analyzing the data. Results: According to the findings, there was no significant relationship between house work regarding duration and severity of activity in pregnancy with preterm labor. Conclusion: There was no relationship between house work in pregnancy and preterm labor. Further studies are recommended

    <i>Ab initio</i> and DFT studies on ionization of octopamine and 6-aminopenicillanic acid in aqueous solution

    No full text
    619-626The existing quantum chemical methods to accurately predict pKa and to determine the trade-off between accuracy and computational cost have been evaluated by ab initio and density functional theory with the B3LYP functional and 6-31+G(d) basis sets and polarizable continuum solvation model. The calculated free energies for determination of pKa values, and intermolecular hydrogen bonds in aqueous solutions of octopamine and 6-aminopenicillanic acid have been computed. This study shows that there is reasonable agreement between the theoretically calculated pKa values and the experimentally determined pKa values for the acid-base reactions obtained by potentiometric and spectrophotometric methods reported in the literature

    A surface spectroscopy study of a Pseudomonas fluorescens biofilm in the presence of an immobilized air bubble

    No full text
    A linear spectral mapping technique was applied to monitor the growth of biomolecular absorption bands at the bio-interface of a nascent Pseudomonas fluorescens biofilm during and after interaction with a surface-adhered air bubble. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectra were obtained in different locations in a microchannel with adequate spatial and temporal resolution to study the effect of a static bubble on the evolution of protein and lipid signals at the ATR crystal surface. The results reveal that the presence of a bubble during the lag phase modified levels of extracellular lipids and affected a surface restructuring process, many hours after the bubble's disappearance
    corecore