164 research outputs found

    A Graphene-based Hot Electron Transistor

    Get PDF
    We experimentally demonstrate DC functionality of graphene-based hot electron transistors, which we call Graphene Base Transistors (GBT). The fabrication scheme is potentially compatible with silicon technology and can be carried out at the wafer scale with standard silicon technology. The state of the GBTs can be switched by a potential applied to the transistor base, which is made of graphene. Transfer characteristics of the GBTs show ON/OFF current ratios exceeding 50.000.Comment: 18 pages, 6 figure

    Großflächige Abscheidung von Graphen - Ein wichtiger Schritt für neuartige Bauelemente

    Get PDF
    Das wachsende Interesse an Graphen beruht auf seiner unverwechselbaren Bandstruktur und seinen damit zusammenhängenden herausragenden physikalischen Eigenschaften. Es wird daher weltweit nach einem Verfahren gesucht, Graphen großflächig und mit hoher Qualität abzuscheiden. In einer an der TH Wildau [FH] speziell für diese Aufgabe konzipierten Reaktionskammer wurde die Herstellung mittels chemischer Gasphasenabscheidung auf katalytischen Metalloberflächen für verschiedene Parameter studiert und deren Verträglichkeit mit der CMOS -Technologie untersucht. Die ersten Tests erfolgten auf Nickel, da hier eine im Volumen stattfindende katalytische Reaktion einsetzt. In weiteren Schritten fiel die Wahl auf Kupfer, da hier die Reaktion an der Oberfläche stattfindet und daher ein stabilerer Prozess realisiert werden konnte. Die Qualitätsprüfung der erzeugten Schichten erfolgte mittels Ramanspektrometrie

    Residual Metallic Contamination of Transferred Chemical Vapor Deposited Graphene

    Get PDF
    Integration of graphene with Si microelectronics is very appealing by offering potentially a broad range of new functionalities. New materials to be integrated with Si platform must conform to stringent purity standards. Here, we investigate graphene layers grown on copper foils by chemical vapor deposition and transferred to silicon wafers by wet etch and electrochemical delamination methods with respect to residual sub-monolayer metallic contaminations. Regardless of the transfer method and associated cleaning scheme, time-of-flight secondary ion mass spectrometry and total reflection x-ray fluorescence measurements indicate that the graphene sheets are contaminated with residual metals (copper, iron) with a concentration exceeding 1013^{13} atoms/cm2^{2}. These metal impurities appear to be partly mobile upon thermal treatment as shown by depth profiling and reduction of the minority charge carrier diffusion length in the silicon substrate. As residual metallic impurities can significantly alter electronic and electrochemical properties of graphene and can severely impede the process of integration with silicon microelectronics these results reveal that further progress in synthesis, handling, and cleaning of graphene is required on the way to its advanced electronic and optoelectronic applications.Comment: 26 pages, including supporting informatio

    Author response

    Get PDF
    Bacterial biofilms can generate micro-heterogeneity in terms of surface structures. However, little is known about the associated changes in the physics of cell–cell interaction and its impact on the architecture of biofilms. In this study, we used the type IV pilus of Neisseria gonorrhoeae to test whether variation of surface structures induces cell-sorting. We show that the rupture forces between pili are fine-tuned by post-translational modification. Bacterial sorting was dependent on pilus post-translational modification and pilus density. Active force generation was necessary for defined morphologies of mixed microcolonies. The observed morphotypes were in remarkable agreement with the differential strength of adhesion hypothesis proposing that a tug-of-war among surface structures of different cells governs cell sorting. We conclude that in early biofilms the density and rupture force of bacterial surface structures can trigger cell sorting based on similar physical principles as in developing embryos. DOI: http://dx.doi.org/10.7554/eLife.10811.00

    A Novel Synthetic Odorant Blend for Trapping of Malaria and Other African Mosquito Species

    Get PDF
    Estimating the biting fraction of mosquitoes is of critical importance for risk assessment of malaria transmission. Here, we present a novel odor-based tool that has been rigorously assessed in semi-field assays and traditional African villages for estimating the number of mosquitoes that enter houses in search of a blood meal. A standard synthetic blend (SB) consisting of ammonia, (S)-lactic acid, tetradecanoic acid, and carbon dioxide was complemented with isovaleric acid, 4,5 dimethylthiazole, 2-methyl-1-butanol, and 3-methyl-1-butanol in various combinations and concentrations, and tested for attractiveness to the malaria mosquito Anopheles gambiae. Compounds were released through low density polyethylene (LDPE) material or from nylon strips (nylon). Studies were done in a semi-field facility and two traditional villages in western Kenya. The alcohol 3-methyl-1-butanol significantly increased the attraction of SB. The other compounds proved less effective or inhibitory. Tested in a village, 3-methyl-1-butanol, released from LDPE, increased the attraction of SB. Further studies showed a significantly enhanced attraction of adding 3-methyl-1-butanol to SB compared to previously-published attractive blends both under semi-field and village conditions. Other mosquito species with relevance for public health were collected with this blend in significantly higher numbers as well. These results demonstrate the advent of a novel, reliable odor-based sampling tool for the collection of malaria and other mosquitoes. The advantage of this odor-based tool over existing mosquito sampling tools is its reproducibility, objectiveness, and relatively low cost compared to current standards of CDC light traps or the human landing catch

    Restriction and Sequence Alterations Affect DNA Uptake Sequence-Dependent Transformation in Neisseria meningitidis

    Get PDF
    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    Design of an Efficient, High-Throughput Photomultiplier Tube Testing Facility for the IceCube Upgrade

    Get PDF
    • …
    corecore