363 research outputs found

    Cinema and the ‘City of the Mind’: Using Motion Pictures to Explore Human-Environment Transactions in Planning Education.

    Get PDF
    This chapter examines the pedagogical use of film in planning education, specifically as it relates to the teaching of environmental psychology. The intersections between film, theory, and pedagogy are important because film is herein invested with the power to represent – and more importantly interpret and challenge – our understandings of human-environment transactions. I further suggest that planning students may be undereducated in the nature of these transactions and that the medium of the motion picture – combined with the neglected body of theory represented by environmental psychology – offers an excellent synthesis to address this need.https://link.springer.com/chapter/10.1007%2F978-90-481-3209-6_1

    A new rhynchocephalian from the late jurassic of Germany with a dentition that is unique amongst tetrapods.

    Get PDF
    Rhynchocephalians, the sister group of squamates (lizards and snakes), are only represented by the single genus Sphenodon today. This taxon is often considered to represent a very conservative lineage. However, rhynchocephalians were common during the late Triassic to latest Jurassic periods, but rapidly declined afterwards, which is generally attributed to their supposedly adaptive inferiority to squamates and/or Mesozoic mammals, which radiated at that time. New finds of Mesozoic rhynchocephalians can thus provide important new information on the evolutionary history of the group. A new fossil relative of Sphenodon from the latest Jurassic of southern Germany, Oenosaurus muehlheimensis gen. et sp. nov., presents a dentition that is unique amongst tetrapods. The dentition of this taxon consists of massive, continuously growing tooth plates, probably indicating a crushing dentition, thus representing a previously unknown trophic adaptation in rhynchocephalians. The evolution of the extraordinary dentition of Oenosaurus from the already highly specialized Zahnanlage generally present in derived rhynchocephalians demonstrates an unexpected evolutionary plasticity of these animals. Together with other lines of evidence, this seriously casts doubts on the assumption that rhynchocephalians are a conservative and adaptively inferior lineage. Furthermore, the new taxon underlines the high morphological and ecological diversity of rhynchocephalians in the latest Jurassic of Europe, just before the decline of this lineage on this continent. Thus, selection pressure by radiating squamates or Mesozoic mammals alone might not be sufficient to explain the demise of the clade in the Late Mesozoic, and climate change in the course of the fragmentation of the supercontinent of Pangaea might have played a major role

    Laws relating runs, long runs, and steps in gambler's ruin, with persistence in two strata

    Full text link
    Define a certain gambler's ruin process \mathbf{X}_{j}, \mbox{ \ }j\ge 0, such that the increments εj:=XjXj1\varepsilon_{j}:=\mathbf{X}_{j}-\mathbf{X}_{j-1} take values ±1\pm1 and satisfy P(εj+1=1εj=1,Xj=k)=P(εj+1=1εj=1,Xj=k)=akP(\varepsilon_{j+1}=1|\varepsilon_{j}=1, |\mathbf{X}_{j}|=k)=P(\varepsilon_{j+1}=-1|\varepsilon_{j}=-1,|\mathbf{X}_{j}|=k)=a_k, all j1j\ge 1, where ak=aa_k=a if 0kf1 0\le k\le f-1, and ak=ba_k=b if fk<Nf\le k<N. Here 0<a,b<10<a, b <1 denote persistence parameters and f,NN f ,N\in \mathbb{N} with f<Nf<N. The process starts at X0=m(N,N)\mathbf{X}_0=m\in (-N,N) and terminates when Xj=N|\mathbf{X}_j|=N. Denote by RN{\cal R}'_N, UN{\cal U}'_N, and LN{\cal L}'_N, respectively, the numbers of runs, long runs, and steps in the meander portion of the gambler's ruin process. Define XN:=(LN1ab(1a)(1b)RN1(1a)(1b)UN)/NX_N:=\left ({\cal L}'_N-\frac{1-a-b}{(1-a)(1-b)}{\cal R}'_N-\frac{1}{(1-a)(1-b)}{\cal U}'_N\right )/N and let fηNf\sim\eta N for some 0<η<10<\eta <1. We show limNE{eitXN}=φ^(t)\lim_{N\to\infty} E\{e^{itX_N}\}=\hat{\varphi}(t) exists in an explicit form. We obtain a companion theorem for the last visit portion of the gambler's ruin.Comment: Presented at 8th International Conference on Lattice Path Combinatorics, Cal Poly Pomona, Aug., 2015. The 2nd version has been streamlined, with references added, including reference to a companion document with details of calculations via Mathematica. The 3rd version has 2 new figures and improved presentatio

    Matrix interpretation of multiple orthogonality

    Get PDF
    In this work we give an interpretation of a (s(d + 1) + 1)-term recurrence relation in terms of type II multiple orthogonal polynomials.We rewrite this recurrence relation in matrix form and we obtain a three-term recurrence relation for vector polynomials with matrix coefficients. We present a matrix interpretation of the type II multi-orthogonality conditions.We state a Favard type theorem and the expression for the resolvent function associated to the vector of linear functionals. Finally a reinterpretation of the type II Hermite- Padé approximation in matrix form is given

    Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution

    Full text link
    A birth-death process is a continuous-time Markov chain that counts the number of particles in a system over time. In the general process with nn current particles, a new particle is born with instantaneous rate λn\lambda_n and a particle dies with instantaneous rate μn\mu_n. Currently no robust and efficient method exists to evaluate the finite-time transition probabilities in a general birth-death process with arbitrary birth and death rates. In this paper, we first revisit the theory of continued fractions to obtain expressions for the Laplace transforms of these transition probabilities and make explicit an important derivation connecting transition probabilities and continued fractions. We then develop an efficient algorithm for computing these probabilities that analyzes the error associated with approximations in the method. We demonstrate that this error-controlled method agrees with known solutions and outperforms previous approaches to computing these probabilities. Finally, we apply our novel method to several important problems in ecology, evolution, and genetics

    The impact of Stieltjes' work on continued fractions and orthogonal polynomials

    Full text link
    Stieltjes' work on continued fractions and the orthogonal polynomials related to continued fraction expansions is summarized and an attempt is made to describe the influence of Stieltjes' ideas and work in research done after his death, with an emphasis on the theory of orthogonal polynomials

    Preparation and Characterization of Stimuli-Responsive Magnetic Nanoparticles

    Get PDF
    In this work, the main attention was focused on the synthesis of stimuli-responsive magnetic nanoparticles (SR-MNPs) and the influence of glutathione concentration on its cleavage efficiency. Magnetic nanoparticles (MNPs) were first modified with activated pyridyldithio. Then, MNPs modified with activated pyridyldithio (MNPs-PDT) were conjugated with 2, 4-diamino-6-mercaptopyrimidine (DMP) to form SR-MNPs via stimuli-responsive disulfide linkage. Fourier transform infrared spectra (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize MNPs-PDT. The disulfide linkage can be cleaved by reduced glutathione (GHS). The concentration of glutathione plays an important role in controlling the cleaved efficiency. The optimum concentration of GHS to release DMP is in the millimolar range. These results had provided an important insight into the design of new MNPs for biomedicine applications, such as drug delivery and bio-separation

    Construction and implementation of asymptotic expansions for Jacobi-type orthogonal polynomials

    Get PDF
    We are interested in the asymptotic behavior of orthogonal polynomials of the generalized Jacobi type as their degree n goes to ∞. These are defined on the interval [−1, 1] with weight function: w(x)=(1−x)α(1+x)βh(x),α,β>−1 and h(x) a real, analytic and strictly positive function on [−1, 1]. This information is available in the work of Kuijlaars et al. (Adv. Math. 188, 337–398 2004), where the authors use the Riemann–Hilbert formulation and the Deift–Zhou non-linear steepest descent method. We show that computing higher-order terms can be simplified, leading to their efficient construction. The resulting asymptotic expansions in every region of the complex plane are implemented both symbolically and numerically, and the code is made publicly available. The main advantage of these expansions is that they lead to increasing accuracy for increasing degree of the polynomials, at a computational cost that is actually independent of the degree. In contrast, the typical use of the recurrence relation for orthogonal polynomials in computations leads to a cost that is at least linear in the degree. Furthermore, the expansions may be used to compute Gaussian quadrature rules in O(n) operations, rather than O(n2) based on the recurrence relation
    corecore