53 research outputs found

    Accuracy of the toroidal approximation for the calculus of concave and convex liquid bridges between particles

    Get PDF
    In situations and processes where finely divided solids are in contact with small amounts of liquid, capillary effects influence the behavior of such systems. If the quantity of liquid is rather limited, it arranges as individual liquid bridges connecting the solid particles just wetting a portion of the solids surface. These bridges develop forces which drive the cohesion and motion of the solid particles, further determining in many times the final structure or even the quality of the material. Since the liquid is not able to fully cover the solid particles like in a proper suspension, this liquid adopts a shape which is determined by the principle of constant mean curvature. A rigorous determination of such a shape, which in turn determines the capillary forces, must be carried out by solving the Young-Laplace equation. Due to the difficulties in such calculation, it was proposed to approximate the meniscus profile by an arc-of-circumference, the so-called toroidal approximation. Here it is quantitatively studied the suitability of such approximation for the most general geometry of liquid bridges, finding that the error of the approximation is below 10% for concave menisci and 30% for convex one

    Viscosity of a Newtonian fluid calculated from the deformation of droplets covered with a surfactant under a linear shear flow

    Get PDF
    The viscosity of small fluid droplets covered with a surfactant is determined using drop deformation techniques. This method, proposed by Hu and Lips, is here extended to the case of the presence of a surface-active adsorpted at the liquid-liquid interface, to consider more general scenarios. In these experiments, a droplet is sheared by another immiscible fluid of known viscosity, both Newtonian liquids. From the steady-state deformation and retraction mechanisms, the droplet viscosity is calculated using an equation derived from the theories of Taylor and Rallison. Although these theories were expressed for surfactant-free interfaces, they can be applied when a surfactant is present in the system if the sheared droplet reaches reliable steady-state deformations and the surfactant attains its equilibrium adsorption concentration. These determinations are compared to bulk viscosities measured in a rheometer for systems with different viscosity ratios and surfactant concentrations. Very good agreement between both determinations is found for drops more viscous than the continuous phas

    Capillary and van der Waals forces between uncharged colloidal particles linked by a liquid bridge

    Get PDF
    This work presents a theoretical study of the forces established between colloidal particles connected by means of a concave liquid bridge, where the solid particles are partially wetted by a certain amount of liquid also possessing a dry portion of their surfaces. In our analysis, we adopt a two-particle model assuming that the solids are spherical and with the same sizes and properties and that the liquid meniscus features an arc-of-circumference contour. The forces considered are the typical capillary ones, namely, wetting and Laplace forces, as well as the van der Waals force, assuming the particles uncharged. We analyze different parameters which govern the liquid bridge: interparticle separation, wetting angle, and liquid volume, which later determine the value of the forces. Due to the dual characteristic of the particles' surfaces, wet and dry, the forces are to be determined numerically in each case. The results indicate that the capillary forces are dominant in most of the situations meanwhile the van der Waals force is noticeable at very short distances between the particle

    Effect of surfactants on the deformation and break-up of an aqueous drop in oils under high electric field strengths

    Get PDF
    Understanding the deformation and break-up of drops is of great significance in various applications such as emulsification and phase separation. Most practical systems contain surface-active agents that are present as impurities affecting the properties of the system, e.g. modifying the rigidity of the film that affects emulsion stability. In this paper, the effect of surfactants on the deformation and break-up of an aqueous drop in an immiscible dielectric oil under the action of an electric field is addressed. The experiments were carried out on a single drop in a microscopic cell under an applied external electric field. A nonionic surfactant, polyethylene glycol sorbitan monolaurate (Tween 20), and an ionic surfactant, sodium dodecyl sulfate (SDS), were used at different concentrations. The drop adopted in most cases a prolate shape. However, the presence of the surfactant affected both the extent of deformation and the modes of break-up. The drop deformation extent increased rapidly with the surfactant concentration, while smaller drops deformed less under the same external electric field strength. When the surfactant concentration was high, the position of break-up could be from both poles along the main axis of the drops in the direction of the electric field

    Characterization method of dielectric properties of free falling drops in a microwave processing cavity and its application in microwave internal gelation

    Full text link
    [EN] Microwave internal gelation (MIG) is a chemical process proposed for the production of nuclear particle fuel. The internal gelation reaction is triggered by a temperature increase of aqueous droplets falling by gravity by means of non-contact microwave heating. Due to the short residence time of a solution droplet in a microwave heating cavity, a detailed knowledge of the interaction between microwaves and chemical solution (shaped in small drops) is required. This paper describes a procedure that enables the measurement of the dielectric properties of aqueous droplets that freely fall through a microwave cavity. These measurements provide the information to determine the optimal values of the parameters (such as frequency and power) that dictate the heating of such a material under microwaves.This work is a part of the PINE (Platform for Innovative Nuclear FuEls) project which targets the development of an advanced production method for Sphere-Pac fuel and is financed by the Swiss Competence Center for Energy and Mobility. The work has been also financed by the European Commission through contract no 295664 regarding the FP7 PELGRIMM Project, as well as contract no 295825 regarding the FP7-ASGARD Project. MC-S would like to thank the ITACA research team (UPV Valencia, Spain) and the EMPA Thun (Switzerland) for their support in the measurements and Carl Beard (PSI, Switzerland) for the help provided in respect with CST simulations. The work of FLP-F was supported by the Conselleria d'Educacio of the Generalitat Valenciana for economic support (BEST/2012/010).Cabanes Sempere, M.; Catalá Civera, JM.; Penaranda-Foix, FL.; Cozzo, C.; Vaucher, S.; Pouchon, MA. (2013). Characterization method of dielectric properties of free falling drops in a microwave processing cavity and its application in microwave internal gelation. Measurement Science and Technology. 24(9). https://doi.org/10.1088/0957-0233/24/9/095009S24

    Conservação e restauro de uma urna em vidro do século I d.C., encontrada em Mértola (Portugal)

    Get PDF
    International audienceThe evolution of capillary forces during evap-oration and the corresponding changes in the geometrical characteristics of liquid (water) bridges between two glass spheres with constant separation are examined experimen-tally. For comparison, the liquid bridges were also tested for mechanical extension (at constant volume). The obtained results reveal substantial differences between the evolution of capillary force due to evaporation and the evolution due to extension of the liquid bridges. During both evaporation and extension, the change of interparticle capillary forces consists in a force decrease to zero either gradually or via rupture of the bridge. At small separations between the grains (short & wide bridges) during evaporation and at large volumes during extension, there is a slight initial increase of force. During evaporation, the capillary force decreases slowly at the begin-ning of the process and quickly at the end of the process; during extension, the capillary force decreases quickly at the beginning and slowly at the end of the process. Rup-ture during evaporation of the bridges occurs most abruptly for bridges with wider separations (tall and thin), sometimes occurring after only 25 % of the water volume was evapo-rated. The evolution (pinning/depinning) of two geometri-cal characteristics of the bridge, the diameter of the three-phase contact line and the "apparent" contact angle at the solid/liquid/gas interface, seem to control the capillary force evolution. The findings are of relevance to the mechanics of unsaturated granular media in the final phase of drying
    corecore