92 research outputs found

    Mechanics of Kinesin-Crosslinked Microtubule Networks

    Get PDF

    Molecular control of stress transmission in the microtubule cytoskeleton

    Get PDF
    AbstractIn this article, we will summarize recent progress in understanding the mechanical origins of rigidity, strength, resiliency and stress transmission in the MT cytoskeleton using reconstituted networks formed from purified components. We focus on the role of network architecture, crosslinker compliance and dynamics, and molecular determinants of single filament elasticity, while highlighting open questions and future directions for this work

    Eg5 steps it up!

    Get PDF
    Understanding how molecular motors generate force and move microtubules in mitosis is essential to understanding the physical mechanism of cell division. Recent measurements have shown that one mitotic kinesin superfamily member, Eg5, is mechanically processive and capable of crosslinking and sliding microtubules in vitro. In this review, we highlight recent work that explores how Eg5 functions under load, with an emphasis on the nanomechanical properties of single enzymes

    Molecular-scale substrate anisotropy and crowding drive long-range nematic order of cell monolayers

    Full text link
    The ability of cells to reorganize in response to external stimuli is important in areas ranging from morphogenesis to tissue engineering. Elongated cells can co-align due to steric effects, forming states with local order. We show that molecular-scale substrate anisotropy can direct cell organization, resulting in the emergence of nematic order on tissue scales. To quantitatively examine the disorder-order transition, we developed a high-throughput imaging platform to analyze velocity and orientational correlations for several thousand cells over days. The establishment of global, seemingly long-ranged order is facilitated by enhanced cell division along the substrate's nematic axis, and associated extensile stresses that restructure the cells' actomyosin networks. Our work, which connects to a class of systems known as active dry nematics, provides a new understanding of the dynamics of cellular remodeling and organization in weakly interacting cell collectives. This enables data-driven discovery of cell-cell interactions and points to strategies for tissue engineering.Comment: 29 pages, 7 figure

    Group cognitive behavioural therapy for stroke survivors with depression and their carers

    Get PDF
    Background: Depression in stroke survivors is common, leads to poorer outcomes and often not treated. A group cognitive behavioural therapy (CBT) program (Brainstorm) for stroke survivors with depression, and their carers has been running as part of usual care since 2007. Objective: To evaluate the implementation and acceptability of Brainstorm, a closed group intervention consisting of up to 10 sessions of education, activity planning, problem solving and thought challenging. Methods: Participating stroke survivors and their carers complete assessment measures at baseline, post-treatment and 1-month and 6-months follow-up. A mixed models for repeated measures data was conducted with depression and anxiety scores for stroke survivors (Beck Depression Inventory-II; Hospital Anxiety and Depression Scale) and the assessment of depression, anxiety and carer burden for carers. Acceptability was assessed by session attendance and written and open participant feedback upon completion of the program. Results: Forty-eight community dwelling stroke survivors and 34 carers attended Brainstorm, with a median attendance of 88% of sessions. Follow-up assessments were completed by 77% (post-treatment), 46% (1-month) and 38% (6-month) of stroke survivors. Stroke survivors’ depression scores decreased from baseline to post-treatment (p<.001); maintained at 1-month (p<.001) but not at 6-month (p=.056). Anxiety scores decreased between baseline and 1-month (p=.013). Carer burden, depression and anxiety scores at 1-month and 6-month follow-up, for carers, were all reduced when compared with baseline (p<.05). Conclusion: The Brainstorm group intervention for depression in stroke survivors appears to have been effectively implemented and is acceptable to stroke survivors and carers

    Transcriptome dynamics of CD4âș T cells during malaria maps gradual transit from effector to memory

    Get PDF
    The dynamics of CD4âș T cell memory development remain to be examined at genome scale. In malaria-endemic regions, antimalarial chemoprevention protects long after its cessation and associates with effects on CD4âș T cells. We applied single-cell RNA sequencing and computational modelling to track memory development during Plasmodium infection and treatment. In the absence of central memory precursors, two trajectories developed as T helper 1 (T_H1) and follicular helper T (T_(FH)) transcriptomes contracted and partially coalesced over three weeks. Progeny of single clones populated T_H1 and T_(FH) trajectories, and fate-mapping suggested that there was minimal lineage plasticity. Relationships between T_(FH) and central memory were revealed, with antimalarials modulating these responses and boosting T_H1 recall. Finally, single-cell epigenomics confirmed that heterogeneity among effectors was partially reset in memory. Thus, the effector-to-memory transition in CD4âș T cells is gradual during malaria and is modulated by antiparasitic drugs. Graphical user interfaces are presented for examining gene-expression dynamics and gene–gene correlations (http://haquelab.mdhs.unimelb.edu.au/cd4_memory/)

    Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria.

    Get PDF
    Differentiation of naĂŻve CD4+ T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo. By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmental trajectories of Th1 and Tfh cells during blood-stage Plasmodium infection in mice. By tracking clonality using endogenous TCR sequences, we first demonstrated that Th1/Tfh bifurcation had occurred at both population and single-clone levels. Next, we identified genes whose expression was associated with Th1 or Tfh fates, and demonstrated a T-cell intrinsic role for Galectin-1 in supporting a Th1 differentiation. We also revealed the close molecular relationship between Th1 and IL-10-producing Tr1 cells in this infection. Th1 and Tfh fates emerged from a highly proliferative precursor that upregulated aerobic glycolysis and accelerated cell cycling as cytokine expression began. Dynamic gene expression of chemokine receptors around bifurcation predicted roles for cell-cell in driving Th1/Tfh fates. In particular, we found that precursor Th cells were coached towards a Th1 but not a Tfh fate by inflammatory monocytes. Thus, by integrating genomic and computational approaches, our study has provided two unique resources, a database www.PlasmoTH.org, which facilitates discovery of novel factors controlling Th1/Tfh fate commitment, and more generally, GPfates, a modelling framework for characterizing cell differentiation towards multiple fates

    Dynamics of mussel plaque detachment

    Full text link
    Mussels are well known for their ability to generate and maintain strong, long-lasting adhesive bonds under hostile conditions. Many prior studies attribute their adhesive strength to the strong chemical interactions between the holdfast and substrate. While chemical interactions are certainly important, adhesive performance is also determined by contact geometry, and understanding the coupling between chemical interactions and the plaque shape and mechanical properties is essential in deploying bioinspired strategies when engineering improved adhesives. To investigate how the shape and mechanical properties of the mussel's plaque contribute to its adhesive performance, we use a custom built load frame capable of fully characterizing the dynamics of the detachment. With this, we can pull on samples along any orientation, while at the same time measuring the resulting force and imaging the bulk deformations of the plaque as well as the holdfast-substrate interface where debonding occurs. We find that the force-induced yielding of the mussel plaque improves the bond strength by two orders of magnitude and that the holdfast shape improves bond strength by an additional order of magnitude as compared to other simple geometries. These results demonstrate that optimizing the contact geometry can play as important a role on adhesive performance as optimizing the chemical interactions as observed in other organisms and model systems
    • 

    corecore